SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stadlmayr A) "

Sökning: WFRF:(Stadlmayr A)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Szabo, P. S., et al. (författare)
  • Experimental Insights Into Space Weathering of Phobos : Laboratory Investigation of Sputtering by Atomic and Molecular Planetary Ions
  • 2020
  • Ingår i: Journal of Geophysical Research - Planets. - : AMER GEOPHYSICAL UNION. - 2169-9097 .- 2169-9100. ; 125:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Investigating the space weathering of the Martian moon Phobos represents an important step toward understanding the development from its origin to its present-day appearance. Depending on Phobos' orbital position, its surface is continuously sputtered by the solar wind and planetary ions that originate in the Martian atmosphere. Based on Mars Atmosphere and Volatile Evolution measurements, it has been proposed that sputtering by planetary O+ and O-2(+) ions dominates in the Martian tail region, where the planet mostly shadows Phobos from the solar wind. In these models, uncertainties for sputtering yield inputs still exist due to the lack of sufficient analog experiments. Therefore, sputtering measurements with O+, O-2(+), C+, and CO2+ ions between 1 and 5 keV were performed using augite samples as Phobos analogs. The experimental results for O+ irradiations show smaller mass changes than predicted by SDTrimSP simulations, which probably can be attributed to O implantation enabled by the Fe content of the target. Sputtering with O-2(+) and CO2+ in the low keV range shows no deviations in the sputtering yields attributable to molecular effects. Therefore, CO2+ ions will most likely be negligible for the sputtering of Phobos according to the current understanding of ion fluxes on the Martian moon. Ultimately, our experiments suggest that the sputtering contribution on Phobos by O ions is about 50% smaller than previously assumed. This does not change the qualitative outcome from previous modeling stating that planetary O ions are by far the dominant sputtering contribution on Phobos in the Martian tail region.
  •  
4.
  • Cupak, C., et al. (författare)
  • Sputter yields of rough surfaces : Importance of the mean surface inclination angle from nano- to microscopic rough regimes
  • 2021
  • Ingår i: Applied Surface Science. - : Elsevier. - 0169-4332 .- 1873-5584. ; 570
  • Tidskriftsartikel (refereegranskat)abstract
    • The roughness of a surface is known to have a strong influence on the sputtering process. Commonly used 1D Monte Carlo codes for calculating sputter yields show good agreement with experimental data only for comparably flat surfaces, whereas local ion incidence angles, shadowing and redeposition influence the sputter yields in both magnitude and angular dependence on rough surfaces. In the present work, we therefore investigated tungsten samples of largely different roughness, characterised by atomic force and confocal microscopy. A highly sensitive quartz crystal microbalance was used to determine sputter yields during ion irradiation. Low ion fluences were applied to ensure that the surface morphology did not change during irradiation. The results were used to benchmark our new ray-tracing simulation code SPRAY, which can take microscopy images without limitations in size as input. SPRAY was furthermore applied to perform systematic simulations for artificially roughened and computer-generated surfaces. A clear result was that the governing parameter for description of the sputtering behaviour is the mean value of the surface inclination angle distribution, rather than the commonly used root mean square roughness. Our simulations show that this parameter is universally applicable for a wide range of different surface structures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy