SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stafoggia M) "

Sökning: WFRF:(Stafoggia M)

  • Resultat 1-10 av 90
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Stafoggia, M., et al. (författare)
  • Joint effect of heat and air pollution on mortality in 620 cities of 36 countries
  • 2023
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 181
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The epidemiological evidence on the interaction between heat and ambient air pollution on mor-tality is still inconsistent. Objectives: To investigate the interaction between heat and ambient air pollution on daily mortality in a large dataset of 620 cities from 36 countries. Methods: We used daily data on all-cause mortality, air temperature, particulate matter <= 10 mu m (PM10), PM <= 2.5 mu m (PM2.5), nitrogen dioxide (NO2), and ozone (O3) from 620 cities in 36 countries in the period 1995-2020. We restricted the analysis to the six consecutive warmest months in each city. City-specific data were analysed with over-dispersed Poisson regression models, followed by a multilevel random-effects meta-analysis. The joint association between air temperature and air pollutants was modelled with product terms between non-linear functions for air temperature and linear functions for air pollutants. Results: We analyzed 22,630,598 deaths. An increase in mean temperature from the 75th to the 99th percentile of city-specific distributions was associated with an average 8.9 % (95 % confidence interval: 7.1 %, 10.7 %) mortality increment, ranging between 5.3 % (3.8 %, 6.9 %) and 12.8 % (8.7 %, 17.0 %), when daily PM10 was equal to 10 or 90 mu g/m3, respectively. Corresponding estimates when daily O3 concentrations were 40 or 160 mu g/ m3 were 2.9 % (1.1 %, 4.7 %) and 12.5 % (6.9 %, 18.5 %), respectively. Similarly, a 10 mu g/m3 increment in PM10 was associated with a 0.54 % (0.10 %, 0.98 %) and 1.21 % (0.69 %, 1.72 %) increase in mortality when daily air temperature was set to the 1st and 99th city-specific percentiles, respectively. Corresponding mortality estimate for O3 across these temperature percentiles were 0.00 % (-0.44 %, 0.44 %) and 0.53 % (0.38 %, 0.68 %). Similar effect modification results, although slightly weaker, were found for PM2.5 and NO2. Conclusions: Suggestive evidence of effect modification between air temperature and air pollutants on mortality during the warm period was found in a global dataset of 620 cities.
  •  
2.
  • Raaschou-Nielsen, O., et al. (författare)
  • Particulate matter air pollution components and risk for lung cancer
  • 2016
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 87, s. 66-73
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Particulate matter (PM) air pollution is a human lung carcinogen; however, the components responsible have not been identified. We assessed the associations between PM components and lung cancer incidence. Methods: We used data from 14 cohort studies in eight European countries. We geocoded baseline addresses and assessed air pollution with land-use regression models for eight elements (Cu, Fe, K, Ni, S, Si, V and Zn) in size fractions of PM2.5 and PM10. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effect models for meta-analysis. Results: The 245,782 cohort members contributed 3,229,220 person-years at risk. During follow-up (mean, 13.1 years), 1878 incident cases of lung cancer were diagnosed. In the meta-analyses, elevated hazard ratios (HRs) for lung cancer were associated with all elements except V; none was statistically significant In analyses restricted to participants who did not change residence during follow-up, statistically significant associations were found for PM2.5 Cu (HR, 125; 95% Cl, 1.01-1.53 per 5 ng/m(3)), PM10 Zn (1.28; 1.02-1.59 per 20 ng/m3), PMio S (1.58; 1.03-2.44 per 200 ng/m(3)), PM10 Ni (1.59; 1.12-2.26 per 2 ng/m(3)) and PM10K (1.17; 1.02-1.33 per 100 ng/m(3)). In two-pollutant models, associations between PMio and PM2.5 and lung cancer were largely explained by PM2.5 S. Conclusions: This study indicates that the association between PM in air pollution and lung cancer can be attributed to various PM components and sources. PM containing S and Ni might be particularly important.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 90

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy