SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stahli Manfred) "

Sökning: WFRF:(Stahli Manfred)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Essery, Richard, et al. (författare)
  • An Evaluation of Forest Snow Process Simulations
  • 2009
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 90:8, s. 1120-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Northern Hemisphere has large areas that are forested and seasonally snow covered. Compared with open areas, forest canopies strongly influence interactions between the atmosphere and snow on the ground by sheltering the snow from wind and solar radiation and by intercepting falling snow; these influences have important consequences for the meteorology, hydrology, and ecology of forests. Many of the land surface models used in meteorological and hydrological forecasting now include representations of canopy snow processes, but these have not been widely tested in comparison with observations. Phase 2 of the Snow Model Intercomparison Project (SnowMIP2) was therefore designed as an intercomparison of surface mass and energy balance simulations for snow in forested areas. Model forcing and calibration data for sites with paired forested and open plots were supplied to modeling groups. Participants in 11 countries contributed output from 33 models, and the results are published here for sites in Canada, the United States, and Switzerland. On average, the models perform fairly well in simulating snow accumulation and ablation, although there is a wide intermodal spread and a tendency to underestimate differences in snow mass between open and forested areas. Most models capture the large differences in surface albedos and temperatures between forest canopies and open snow well. There is, however, a strong tendency for models to underestimate soil temperature under snow, particularly for forest sites, and this would have large consequences for simulations of runoff and biological processes in the soil.
  •  
2.
  • Fischer, Benjamin M. C., et al. (författare)
  • Pre-event water contributions to runoff events of different magnitude in pre-alpine headwaters
  • 2017
  • Ingår i: HYDROLOGY RESEARCH. - : IWA PUBLISHING. - 1998-9563 .- 0029-1277 .- 2224-7955. ; 48:1, s. 28-47
  • Tidskriftsartikel (refereegranskat)abstract
    • Precipitation and catchment characteristics of mountainous headwaters can vary largely within short distances. It remains unclear how these two factors determine the contribution of event water and pre-event water to stormflow. We investigated this in five neighboring headwaters with high annual precipitation amounts (> 2,000 mm y(-1)) in a steep pre-alpine region in Switzerland. Rainfall and streamwater of 13 different rainstorms were sampled (P: 5 mm intervals, Q: 12 to 51 samples per events) to perform a two-component isotope hydrograph separation. Pre-event water contributions based on delta O-18 or delta H-2 computation were similar. The pre-event water contributions of headwaters depended largely on rainfall (amount and intensity) and varied more between events than between catchments, despite clear differences in land cover between the catchments. Furthermore, antecedent wetness was not found to control pre-event water contribution. With increasing rainfall amount, the proportion of rainfall in runoff increased and changed from pre-event to event water dominated. The variable rainfall amount and small active storage (organic soil horizon, 20-50 cm) resulted in a threshold in the upper soil horizon with subsequently more variable pre-event water contribution. Our results show the necessity of sampling in different headwaters and events to better understand controlling factors in runoff generation.
  •  
3.
  • Wicki, Adrian, et al. (författare)
  • Simulated or measured soil moisture : which one is adding more value to regional landslide early warning?
  • 2021
  • Ingår i: Hydrology and Earth System Sciences. - : COPERNICUS GESELLSCHAFT MBH. - 1027-5606 .- 1607-7938. ; 25:8, s. 4585-4610
  • Tidskriftsartikel (refereegranskat)abstract
    • The inclusion of soil wetness information in empirical landslide prediction models was shown to improve the forecast goodness of regional landslide early warning systems (LEWSs). However, it is still unclear which source of information - numerical models or in situ measurements - is of higher value for this purpose. In this study, soil moisture dynamics at 133 grassland sites in Switzerland were simulated for the period of 1981 to 2019, using a physically based 1D soil moisture transfer model. A common parameterization set was defined for all sites, except for site-specific soil hydrological properties, and the model performance was assessed at a subset of 14 sites where in situ soil moisture measurements were available on the same plot. A previously developed statistical framework was applied to fit an empirical landslide forecast model, and receiver operating characteristic analysis (ROC) was used to assess the forecast goodness. To assess the sensitivity of the landslide forecasts, the statistical framework was applied to different model parameterizations, to various distances between simulation sites and landslides and to measured soil moisture from a subset of 35 sites for comparison with a measurement-based forecast model. We found that (i) simulated soil moisture is a skilful predictor for regional landslide activity, (ii) that it is sensitive to the formulation of the upper and lower boundary conditions, and (iii) that the information content is strongly distance dependent. Compared to a measurement-based landslide forecast model, the model-based forecast performs better as the homogenization of hydrological processes, and the site representation can lead to a better representation of triggering event conditions. However, it is limited in reproducing critical antecedent saturation conditions due to an inadequate representation of the long-term water storage.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy