SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stam Wytze T.) "

Sökning: WFRF:(Stam Wytze T.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Engelen, Aschwin H., et al. (författare)
  • Effects of wave exposure and depth on biomass, density and fertility of the fucoid seaweed Sargassum polyceratium (Phaeophyta, Sargassaceae)
  • 2005
  • Ingår i: EUROPEAN JOURNAL OF PHYCOLOGY. - : Informa UK Limited. - 0967-0262 .- 1469-4433. ; 40:2, s. 149-158
  • Tidskriftsartikel (refereegranskat)abstract
    • Sargassum polyceratium is widely distributed around the island of Curac¸ao (Netherlands Antilles) where it inhabits strongly contrasting habitats. Changes in population structure have been followed in three bays with increasing levels of wave exposure at two depths: shallow (0 m) and deep (18 m). The effects of increasing wave exposure were investigated by studying three deepwater populations; and the effects of depth by studying shallow- and deep-water populations in the two calmer bays. Total density and stage density (reproductive thalli, juvenile thalli) were determined and total and individual thallus biomass was estimated non-destructively. In the most wave-exposed deep-water population thalli were twice as long with more than twice the biomass than in the calmest deep-water population. Total density and juvenile density were highest in the bay with intermediate wave exposure. Depth was an important factor at both the individual and population level. Shallow-water thalli had basal holdfast areas that were four times larger than those from deep water, and thallus biomass was positively correlated with holdfast area. Shallow-water juveniles invested more in the development of a holdfast and lateral growth than deep-water juveniles. Total biomass per quadrat was up to 10-fold higher in shallow- than in deep-water populations. In shallow-water populations reproductive thalli were present throughout the year whereas in deep-water populations they were present only during autumn and winter. We conclude that both wave exposure and depth affect population structure. Thalli were generally bigger and total biomass higher in the more exposed bay(s) and in shallower water, contradicting the general pattern in macroalgae of reduced size and biomass with increasing wave exposure.
  •  
2.
  • Engelen, Aschwin H., et al. (författare)
  • Life history flexibility allows Sargassum polyceratium to persist in different environments subjected to stochastic disturbance events
  • 2005
  • Ingår i: Coral Reefs. - : Springer Science and Business Media LLC. - 0722-4028 .- 1432-0975. ; 24:4, s. 670-680
  • Tidskriftsartikel (refereegranskat)abstract
    • Stochastic, stage-based matrix models were used to investigate the life history strategy of the seaweed Sargassum polyceratium in shallow intertidal and deep-water (18 m) populations. Matrix models were parameterized with 3 years of yearly transitions among four plant stages quantified from three bays on Curac.ao (Netherlands Antilles). There were years without a storm, with a moderate (winter) storm and with a strong storm (Hurricane Lenny). The stochastic population growth rate varied among populations (ks : 0.54–1.03) but was not related to depth. The most important stages for population growth were reproductive adults (shallow) and non-reproductive adults (deep). With the occurrence of storms, vegetative growth (mainly deep) and fertility (mainly shallow) became the most important processes. Recruitment (shallow) and regeneration from holdfasts (deep) only contributed to population persistence after the hurricane. It is concluded that S . polyceratium has a flexible, depth-dependent, life history strategy that is adjusted to disturbance events.
  •  
3.
  • Olsen, Jeanine L, et al. (författare)
  • The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea.
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 530:7590, s. 331-5
  • Tidskriftsartikel (refereegranskat)abstract
    • Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy