SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Stangl H) "

Search: WFRF:(Stangl H)

  • Result 1-10 of 22
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Lammer, H., et al. (author)
  • Geophysical and Atmospheric Evolution of Habitable Planets
  • 2010
  • In: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 45-68
  • Journal article (peer-reviewed)abstract
    • The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.
  •  
3.
  • Lammer, H., et al. (author)
  • What makes a planet habitable?
  • 2009
  • In: The Astronomy and Astrophysics Review. - : Springer Science and Business Media LLC. - 0935-4956 .- 1432-0754. ; 17:2, s. 181-249
  • Research review (peer-reviewed)abstract
    • This work reviews factors which are important for the evolution of habitable Earth-like planets such as the effects of the host star dependent radiation and particle fluxes on the evolution of atmospheres and initial water inventories. We discuss the geodynamical and geophysical environments which are necessary for planets where plate tectonics remain active over geological time scales and for planets which evolve to one-plate planets. The discoveries of methane-ethane surface lakes on Saturn's large moon Titan, subsurface water oceans or reservoirs inside the moons of Solar System gas giants such as Europa, Ganymede, Titan and Enceladus and more than 335 exoplanets, indicate that the classical definition of the habitable zone concept neglects more exotic habitats and may fail to be adequate for stars which are different from our Sun. A classification of four habitat types is proposed. Class I habitats represent bodies on which stellar and geophysical conditions allow Earth-analog planets to evolve so that complex multi-cellular life forms may originate. Class II habitats includes bodies on which life may evolve but due to stellar and geophysical conditions that are different from the class I habitats, the planets rather evolve toward Venus- or Mars-type worlds where complex life-forms may not develop. Class III habitats are planetary bodies where subsurface water oceans exist which interact directly with a silicate-rich core, while class IV habitats have liquid water layers between two ice layers, or liquids above ice. Furthermore, we discuss from the present viewpoint how life may have originated on early Earth, the possibilities that life may evolve on such Earth-like bodies and how future space missions may discover manifestations of extraterrestrial life.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Chamard, Virginie, et al. (author)
  • Evidence of stacking-fault distribution along an InAs nanowire using micro-focused coherent X-ray diffraction
  • 2008
  • In: Journal of Applied Crystallography. - 1600-5767. ; 41:Part 2, s. 272-280
  • Journal article (peer-reviewed)abstract
    • InAs nanowire samples grown by metal-organic chemical vapor deposition present a significant amount of wurtzite structure, while the zincblende lattice is known to be the stable crystal structure for the bulk material. The question of the wurtzite distribution in the sample is addressed using phase-sensitive coherent X-ray diffraction with a micro-focused beam at a synchrotron source. The simultaneous investigation of the wurtzite 10 (1) over bar0, 10 (2) over bar0, 10 (3) over bar0 reflections performed on a bunch of single wires shows unambiguously that the wurtzite contribution is a result of stacking faults distributed along the wire. Additional simulations lead to adjustments of the wire structural parameters, such as the wurtzite content, the strain distribution, the wire diameters and their respective orientations.
  •  
9.
  • Gundale, Michael, et al. (author)
  • The biological controls of soil carbon accumulation following wildfire and harvest in boreal forests : a review
  • 2024
  • In: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 30:5
  • Research review (peer-reviewed)abstract
    • Boreal forests are frequently subjected to disturbances, including wildfire and clear-cutting. While these disturbances can cause soil carbon (C) losses, the long-term accumulation dynamics of soil C stocks during subsequent stand development is controlled by biological processes related to the balance of net primary production (NPP) and outputs via heterotrophic respiration and leaching, many of which remain poorly understood. We review the biological processes suggested to influence soil C accumulation in boreal forests. Our review indicates that median C accumulation rates following wildfire and clear-cutting are similar (0.15 and 0.20 Mg ha−1 year−1, respectively), however, variation between studies is extremely high. Further, while many individual studies show linear increases in soil C stocks through time after disturbance, there are indications that C stock recovery is fastest early to mid-succession (e.g. 15–80 years) and then slows as forests mature (e.g. >100 years). We indicate that the rapid build-up of soil C in younger stands appears not only driven by higher plant production, but also by a high rate of mycorrhizal hyphal production, and mycorrhizal suppression of saprotrophs. As stands mature, the balance between reductions in plant and mycorrhizal production, increasing plant litter recalcitrance, and ectomycorrhizal decomposers and saprotrophs have been highlighted as key controls on soil C accumulation rates. While some of these controls appear well understood (e.g. temporal patterns in NPP, changes in aboveground litter quality), many others remain research frontiers. Notably, very little data exists describing and comparing successional patterns of root production, mycorrhizal functional traits, mycorrhizal-saprotroph interactions, or C outputs via heterotrophic respiration and dissolved organic C following different disturbances. We argue that these less frequently described controls require attention, as they will be key not only for understanding ecosystem C balances, but also for representing these dynamics more accurately in soil organic C and Earth system models.
  •  
10.
  • Heskel, Mary A., et al. (author)
  • Convergence in the temperature response of leaf respiration across biomes and plant functional types
  • 2016
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:14, s. 3832-3837
  • Journal article (peer-reviewed)abstract
    • Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view