SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Starborg M) "

Sökning: WFRF:(Starborg M)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Brodin, B., et al. (författare)
  • Cloning and characterization of spliced fusion transcript variants of synovial sarcoma : SYT/SSX4, SYT/SSX4v, and SYT/SSX2v. Possible regulatory role of the fusion gene product in wild type SYT expression
  • 2001
  • Ingår i: Gene. - 0378-1119 .- 1879-0038. ; 268:02-jan, s. 173-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The synovial sarcoma translocation t(X;18)(p11.2; q11.2) results in the fusion of the SYT gene on chromosome 18 to exon 5 of either SSX1 or SSX2 genes on chromosome X. We recently reported that the SSX4 gene is also involved in such a translocation. In the present investigation we cloned and sequenced the full-length cDNA of SYT/SSX1, SYT/SSX2 and SYT/SSX4 from synovial sarcoma tissues. We isolated a novel fusion transcript type Variant involving the fusion of SYT with exon 6 of the SSX4 gene (SYT/SSX4v). The SYT/SSX4 and SYT/SSX2 open reading frame also differed from previously reported SYT/SSX sequences by an in-frame addition of 93bp exon located in the junction between exon 7 and 8 of the SYT. This exon is identical to that reported for the murine SYT but has not been previously found in the human transcript. Two SYT transcripts, with and without the 93 bp exon, were co-expressed in mouse NIH3T3 cells, human malignant cells and human testis tissue, but not in human normal fibroblasts. Stable transfection of an SYT/SSX4 expression vector into human and murine cell lines correlated with a down-regulation of SYT transcripts. This was also observed in a synovial sarcoma tumor expressing SYT/SSX4. This suggests that the SYT/SSX fusion gene may regulate SYT expression from the normal allele and as such alter the normal function of SYT.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • STARBORG, M, et al. (författare)
  • A murine replication protein accumulates temporarily in the heterochromatic regions of nuclei prior to initiation of DNA replication
  • 1995
  • Ingår i: Journal of cell science. - : The Company of Biologists. - 0021-9533 .- 1477-9137. ; 108108 ( Pt 3), s. 927-934
  • Tidskriftsartikel (refereegranskat)abstract
    • We have analyzed the expression of the murine P1 gene, the mammalian homologue of the yeast MCM3 protein, during the mitotic cell cycle. The MCM3 protein has previously been shown to be of importance for initiation of DNA replication in Saccharomyces cerevisiae. We found that the murine P1 protein was present in the nuclei of mammalian cells throughout interphase of the cell cycle. This is in contrast to the MCM3 protein, which is located in the nuclei of yeast cells only between the M and the S phase of the cell cycle. Detailed analysis of the intranuclear localization of the P1 protein during the cell cycle revealed that it accumulates transiently in the heterochromatic regions towards the end of G1. The accumulation of the P1 protein in the heterochromatic regions prior to activation of DNA replication suggests that the mammalian P1 protein is also of importance for initiation of DNA replication. The MCM2-3.5 proteins have been suggested to represent yeast equivalents of a hypothetical replication licensing factor initially described in Xenopus. Our data support this model and indicate that the murine P1 protein could function as replication licensing factor. The chromosomal localization of the P1 gene was determined by fluorescence in situ hybridization to region 6p12 in human metaphase chromosomes.
  •  
7.
  • Starborg, M, et al. (författare)
  • The murine Ki-67 cell proliferation antigen accumulates in the nucleolar and heterochromatic regions of interphase cells and at the periphery of the mitotic chromosomes in a process essential for cell cycle progression
  • 1996
  • Ingår i: Journal of cell science. - : The Company of Biologists. - 0021-9533 .- 1477-9137. ; 109109 ( Pt 1), s. 143-153
  • Tidskriftsartikel (refereegranskat)abstract
    • We have isolated the murine homologue of the human Ki-67 antigen. The Ki-67 antigen is used as a marker to assess the proliferative capacity of tumour cells; however, its cellular function is not known. The murine Ki-67 cDNA sequence (TSG126) was found to contain 13 tandem repeats, making up more than half of the total protein size. A comparison of this repetitive sequence block to its human counterpart, which contains 16 consecutive repeat units, revealed several conserved sequence motifs, including one motif frequently observed in proteins interacting with DNA. An antiserum developed against the product of the TSG126 cDNA clone identified a protein with an apparent molecular mass of 360 kDa, mainly expressed in proliferating cells. The TSG126 protein begins to accumulate during the late G1 stage of the cell cycle and is first seen as numerous small granules evenly distributed throughout the nucleus. During the S and the G2 phases, larger foci that overlap with the nucleoli and the heterochromatic regions are formed. At the onset of mitosis the TSG126 protein undergoes a dramatic redistribution process and becomes associated with the surface of the condensed chromosomes. The relative absence of the TSG126 protein from G1 interphase cells strongly argues against a model where the association of the TSG126 protein with mitotic chromosomes merely reflects a mechanism for the symmetrical distribution of nucleolar proteins between daughter cells. Instead, the intracellular distribution of the TSG126 protein during the cell cycle suggests that it could have a chromatin-associated function in both interphase and mitotic cells. Microinjection of anti-TSG126 antibodies into proliferating Swiss-3T3 fibroblasts was found to delay cell cycle progression, indicating that the TSG126 protein has an essential nuclear function.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy