SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Starnawski Piotr) "

Sökning: WFRF:(Starnawski Piotr)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Marshall, Ian P. G., et al. (författare)
  • The novel bacterial phylum Calditrichaeota is diverse, widespread and abundant in marine sediments and has the capacity to degrade detrital proteins
  • 2017
  • Ingår i: Environmental Microbiology Reports. - : Wiley. - 1758-2229. ; 9:4, s. 397-403
  • Tidskriftsartikel (refereegranskat)abstract
    • Calditrichaeota is a recently recognized bacterial phylum with three cultured representatives, isolated from hydrothermal vents. Here we expand the phylogeny and ecology of this novel phylum with metagenome-derived and single-cell genomes from six uncultivated bacteria previously not recognized as members of Calditrichaeota. Using 16S rRNA gene sequences from these genomes, we then identified 322 16S rRNA gene sequences from cultivation-independent studies that can now be classified as Calditrichaeota for the first time. This dataset was used to re-analyse a collection of 16S rRNA gene amplicon datasets from marine sediments showing that the Calditrichaeota are globally distributed in the seabed at high abundance, making up to 6.7% of the total bacterial community. This wide distribution and high abundance of Calditrichaeota in cold marine sediment has gone unrecognized until now. All Calditrichaeota genomes show indications of a chemoorganoheterotrophic metabolism with the potential to degrade detrital proteins through the use of extracellular peptidases. Most of the genomes contain genes encoding proteins that confer O-2 tolerance, consistent with the relatively high abundance of Calditrichaeota in surficial bioturbated part of the seabed and, together with the genes encoding extracellular peptidases, suggestive of a general ecophysiological niche for this newly recognized phylum in marine sediment.
  •  
2.
  • Starnawski, Piotr, et al. (författare)
  • Microbial community assembly and evolution in subseafloor sediment
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:11, s. 2940-2945
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial and archaeal communities inhabiting the subsurface seabed live under strong energy limitation and have growth rates that are orders of magnitude slower than laboratory-grown cultures. It is not understood how subsurface microbial communities are assembled and whether populations undergo adaptive evolution or accumulate mutations as a result of impaired DNA repair under such energy-limited conditions. Here we use amplicon sequencing to explore changes of microbial communities during burial and isolation from the surface to the >5,000-y-old subsurface of marine sediment and identify a small core set of mostly uncultured bacteria and archaea that is present throughout the sediment column. These persisting populations constitute a small fraction of the entire community at the surface but become predominant in the subsurface. We followed patterns of genome diversity with depth in four dominant lineages of the persisting populations by mapping metagenomic sequence reads onto single-cell genomes. Nucleotide sequence diversity was uniformly low and did not change with age and depth of the sediment. Likewise, there was no detectable change inmutation rates and efficacy of selection. Our results indicate that subsurface microbial communities predominantly assemble by selective survival of taxa able to persist under extreme energy limitation.
  •  
3.
  • Zaremba-Niedzwiedzka, Katarzyna, et al. (författare)
  • Asgard archaea illuminate the origin of eukaryotic cellular complexity
  • 2017
  • Ingår i: Nature. - : NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 541:7637, s. 353-
  • Tidskriftsartikel (refereegranskat)abstract
    • The origin and cellular complexity of eukaryotes represent a major enigma in biology. Current data support scenarios in which an archaeal host cell and an alphaproteobacterial (mitochondrial) endosymbiont merged together, resulting in the first eukaryotic cell. The host cell is related to Lokiarchaeota, an archaeal phylum with many eukaryotic features. The emergence of the structural complexity that characterizes eukaryotic cells remains unclear. Here we describe the 'Asgard' superphylum, a group of uncultivated archaea that, as well as Lokiarchaeota, includes Thor-, Odin- and Heimdallarchaeota. Asgard archaea affiliate with eukaryotes in phylogenomic analyses, and their genomes are enriched for proteins formerly considered specific to eukaryotes. Notably, thorarchaeal genomes encode several homologues of eukaryotic membrane-trafficking machinery components, including Sec23/24 and TRAPP domains. Furthermore, we identify thorarchaeal proteins with similar features to eukaryotic coat proteins involved in vesicle biogenesis. Our results expand the known repertoire of 'eukaryote-specific' proteins in Archaea, indicating that the archaeal host cell already contained many key components that govern eukaryotic cellular complexity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy