SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Startin C.) "

Sökning: WFRF:(Startin C.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alic, I., et al. (författare)
  • Patient-specific Alzheimer-like pathology in trisomy 21 cerebral organoids reveals BACE2 as a gene dose-sensitive AD suppressor in human brain
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 26:10, s. 5766-5788
  • Tidskriftsartikel (refereegranskat)abstract
    • A population of more than six million people worldwide at high risk of Alzheimer's disease (AD) are those with Down Syndrome (DS, caused by trisomy 21 (T21)), 70% of whom develop dementia during lifetime, caused by an extra copy of beta-amyloid-(A beta)-precursor-protein gene. We report AD-like pathology in cerebral organoids grown in vitro from non-invasively sampled strands of hair from 71% of DS donors. The pathology consisted of extracellular diffuse and fibrillar A beta deposits, hyperphosphorylated/pathologically conformed Tau, and premature neuronal loss. Presence/absence of AD-like pathology was donor-specific (reproducible between individual organoids/iPSC lines/experiments). Pathology could be triggered in pathology-negative T21 organoids by CRISPR/Cas9-mediated elimination of the third copy of chromosome 21 gene BACE2, but prevented by combined chemical beta and gamma-secretase inhibition. We found that T21 organoids secrete increased proportions of A beta-preventing (A beta 1-19) and A beta-degradation products (A beta 1-20 and A beta 1-34). We show these profiles mirror in cerebrospinal fluid of people with DS. We demonstrate that this protective mechanism is mediated by BACE2-trisomy and cross-inhibited by clinically trialled BACE1 inhibitors. Combined, our data prove the physiological role of BACE2 as a dose-sensitive AD-suppressor gene, potentially explaining the dementia delay in similar to 30% of people with DS. We also show that DS cerebral organoids could be explored as pre-morbid AD-risk population detector and a system for hypothesis-free drug screens as well as identification of natural suppressor genes for neurodegenerative diseases.
  •  
2.
  • Startin, C. M., et al. (författare)
  • Plasma biomarkers for amyloid, tau, and cytokines in Down syndrome and sporadic Alzheimer's disease
  • 2019
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundDown syndrome (DS), caused by chromosome 21 trisomy, is associated with an ultra-high risk of dementia due to Alzheimer's disease (AD), driven by amyloid precursor protein (APP) gene triplication. Understanding relevant molecular differences between those with DS, those with sporadic AD (sAD) without DS, and controls will aid in understanding AD development in DS. We explored group differences in plasma concentrations of amyloid- peptides and tau (as their accumulation is a characteristic feature of AD) and cytokines (as the inflammatory response has been implicated in AD development, and immune dysfunction is common in DS).MethodsWe used ultrasensitive assays to compare plasma concentrations of the amyloid- peptides A(40) and A(42), total tau (t-tau), and the cytokines IL1, IL10, IL6, and TNF between adults with DS (n=31), adults with sAD (n=27), and controls age-matched to the group with DS (n=27), and explored relationships between molecular concentrations and with age within each group. In the group with DS, we also explored relationships with neurofilament light (NfL) concentration, due to its potential use as a biomarker for AD in DS.ResultsA(40), A(42), and IL1 concentrations were higher in DS, with a higher A(42)/A(40) ratio in controls. The group with DS showed moderate positive associations between concentrations of t-tau and both A(42) and IL1. Only NfL concentration in the group with DS showed a significant positive association with age.ConclusionsConcentrations of A(40) and A(42) were much higher in adults with DS than in other groups, reflecting APP gene triplication, while no difference in the A(42)/A(40) ratio between those with DS and sAD may indicate similar processing and deposition of A(40) and A(42) in these groups. Higher concentrations of IL1 in DS may reflect an increased vulnerability to infections and/or an increased prevalence of autoimmune disorders, while the positive association between IL1 and t-tau in DS may indicate IL1 is associated with neurodegeneration. Finally, NfL concentration may be the most suitable biomarker for dementia progression in DS. The identification of such a biomarker is important to improve the detection of dementia and monitor its progression, and for designing clinical intervention studies.
  •  
3.
  • Strydom, A., et al. (författare)
  • Neurofilament light as a blood biomarker for neurodegeneration in Down syndrome
  • 2018
  • Ingår i: Alzheimer's Research and Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 10, s. 1-5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Down syndrome (DS) may be considered a genetic form of Alzheimer's disease (AD) due to universal development of AD neuropathology, but diagnosis and treatment trials are hampered by a lack of reliable blood biomarkers. A potential biomarker is neurofilament light (NF-L), due to its association with axonal damage in neurodegenerative conditions. Methods: We measured blood NF-L concentrations in 100 adults with DS using Simoa NF-light® assays, and we examined relationships with age as well as cross-sectional and longitudinal dementia diagnosis. Results: NF-L concentrations increased with age (Spearman's rho = 0.789, p < 0.001), with a steep increase after age 40, and they were predictive of dementia status (p = 0.022 adjusting for age, sex, and APOE4), but they showed no relationship with long-standing epilepsy or premorbid ability. Baseline NF-L concentrations were associated with longitudinal dementia status. Conclusions: NF-L is a biomarker for neurodegeneration in DS with potential for use in future clinical trials to prevent or delay dementia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy