SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stawinski Jacek Professor) "

Sökning: WFRF:(Stawinski Jacek Professor)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kalek, Marcin, 1983- (författare)
  • Synthesis of C(sp2)-P bonds by palladium-catalyzed reactions : Mechanistic investigations and synthetic studies
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis focuses on synthetic and mechanistic aspects of palladium-catalyzed C(sp2)-P bond-forming reactions, with the aim to develop mild and efficient methods for the synthesis of biologically active phosphorus compounds, e.g. DNA analogs. The first part of the thesis is devoted to detailed mechanistic investigations of the palladium-catalyzed C-P cross-coupling reaction, in order to fully understand the underlying chemistry and by rational design of the reaction conditions, improve the overall efficiency of the process and broaden its applicability. In particular influence of palladium coordination by different anions on the rate of ligand substitution and reductive elimination steps of the reaction was studied. It was found that coordination of acetate ion results in unprecedented acceleration of both of the mechanistic steps, what leads to remarkable shortening of the overall reaction times. In-depth kinetic investigations enabled to ascribe the observed effects to ability of the acetate ion to act as a bidentate ligand for palladium. This causes considerable alternation of the reaction mechanism, comparing to the reaction involving halide-containing complexes, and results in significant rate increase. Based on the above mechanistic studies an efficient method for the synthesis of arylphosphonates, using substoichiometric amounts of inorganic acetate additive and reduced amount of catalyst, was developed. In the next part of the thesis, efforts to further enhance the palladium-catalyzed cross-coupling efficiency by using a microwave-assisted synthesis are described. These explorations resulted in a successful development of two protocols, one for a cross-coupling of H-phosphonates and the other for H,H-phosphinates, under the microwave heating conditions. Application of this energy source resulted in extremely short reaction times, measured in minutes. The final chapter of this thesis deals with studies on palladium-catalyzed SN2’ propargylic substitution reaction with phosphorus nucleophiles, which leads to allene products. Efficient procedure for the synthesis of allenylphosphonates and related compounds was developed. The method enables full control of stereochemistry in the allene moiety and at the asymmetric phosphorus center. Some conclusions on the mechanism of the reaction were also drawn.
  •  
2.
  • Lavén, Gaston, 1971- (författare)
  • Expanding the H-phosphonate and H-phosphonothioate chemistry towards biologically important phosphate analogs
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis focuses on chemical transformations of H-phosphonate and H-phosphonothioate and can be divided in two parts. The first part, is devoted to the development of the palladium-catalyzed P-C bond formation. Both mechanistic and synthetic studies of the transformations have been performed. The stereochemical aspects of palladium catalyzed arylation and benzylation of DNA analogs containing H-phosphonate and H-phosphonothioate have been studied. In chapter 5 the condensation using Mitsunobu reaction of H-phosphonate function and nucleoside has been studied. Efficient protocols for the synthesis of nucleoside H-phosphonate monoester were developed. The last chapter deals with development of silylation-mediated transesterfication of phenyl H-phosphonothioate as a thiophosphonylating agent. The methodology was used to prepare nucleoside H-phosphonothioate monomeric building blocks in good yields.
  •  
3.
  • Wärme, Rikard, 1974- (författare)
  • New methods and reagents for small scale synthesis of phosphor organic compounds with focus on the phosphonic acids and their analogues
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The development of a synthetic method of radiolabelled methylphosphono-fluoridates on a milligram scale is presented. The aim of this method is, besides affording high yield, to choose reaction pathways and reagents so that handling and transfer of labelled toxic substances is minimised, thereby reducing the risk of exposure as much as possible. The only substituent that is stable enough to be labelled is the methyl group, directly bonded to phosphorus. A drawback when labelling the methyl group is that it requires the label to be introduced early in the synthesis since the carbon-phosphorus bond of the methyl substituent usually has to be synthesized a few steps ahead of the final product. Two new classes of reagents for halogenation of phosphorus oxyacids have been developed. Firstly, four different analogues of α-chloroenamines and α-fluoroenamines were evaluated. Secondly, cyanuric fluoride was assessed in solution, but more importantly, as a resin-bound reagent. The reagents are evaluated for halogenation of phosphinic, phosphonic and phosphoric acids. Cyanuric fluoride is also successfully loaded on a polystyrene resin and used as a solid-phase reagent. The reagents produce high yields and low levels of impurities on a milligram scale. Furthermore, a new method for the preparation of mono-alkylated phosphonic acids on a small scale has been developed. The new method utilises the crystal water bound to certain salts to liberate limited amounts of water in a controlled manner. Phosphonic dichlorides are in this way reacted with water to form anhydrides. The anhydride is then cleaved with an appropriate alcohol to produce mono-alkylated phosphonic acids.
  •  
4.
  • Johansson, Tommy, 1975- (författare)
  • Studies on Transformations of H-Phosphonates into DNA Analogues Containing P-S or P-C Bonds
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, mechanistic and synthetic studies on transformations of H-phosphonates into DNA analogues containing P-S or P-C bonds are described. Configurational stability of dinucleoside H-phosphonates and the stereochemical course of their sulfurisation in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) were investigated. In light of these studies, the reported stereoselective sulfurisation of dinucleoside H-phosphonates and benzoylphosphonates in the presence of DBU was proved to be incorrect.Efficient protocols for the synthesis of new nucleotide analogues with non-ionic C-phosphonate internucleotide linkages were developed. The synthesis of dinucleoside 2-pyridylphosphonates was successfully performed by a DBU-promoted reaction of H-phosphonate diesters with N-methoxypyridinium salts. The thio analogues, 2-pyridyl- and 4-pyridyl phosphonothioate diesters, could be obtained by modifying the reactions developed for their oxo counterparts. Dinucleoside 3-pyridylphosphonates were prepared via a palladium(0)-catalysed cross coupling strategy that could be extended also to the synthesis of nucleotide analogues with metal-complexing properties, i.e. terpyridyl- and bipyridylphosphonate derivatives.Oligonucleotides modified with pyridylphosphonate internucleotide linkages have been prepared and preliminary studies on their hybridisation properties and resistance towards enzymatic degradation were performed.Finally, nucleotidic units for the incorporation of pyridylphosphonate groups at the 5’-terminus of oligonucleotides were designed. Condensations of such units with a suitably protected nucleoside afforded after oxidation the expected dinucleoside (3’-5’)-phosphates with pyridylphosphonate monoester functions at the 5’-ends.
  •  
5.
  •  
6.
  • Varghese, Oommen P., 1977- (författare)
  • Conformationally Constrained Nucleosides : Design, Synthesis, and Biochemical Evaluation of Modified Antisense Oligonucleotides
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is concerned with synthesis, structure and biochemical analysis of chemically modified oligonucleotides with potential therapeutic applications. The three types of chemical modifications described here are: (a) A North-East locked 1',2'-azetidine nucleoside (b) A North locked 2',4'-cyanomethylene bridged nucleoside and (c) A 2',4'-aza-ENA-T nucleoside. The synthesis of the 1',2'-azetidine fused nucleosides was described using two different approaches. A highly strained 2',4'-cyanomethylene locked nucleoside was synthesized but could not be converted to the phosphoramidite derivative due to instability during derivatization. The key cyclization step in the aza-ENA-T nucleoside synthesis gave rise to two separable diastereomers due to chirality at the exocyclic nitrogen. Conversion of diastereomer 55 to 56 occurred with a large free energy of activation (ΔG‡ = 23.4 kcal mol-1 at 298 K in pyridine-d5). Of the two isomers the equatorial NH product was more stable than the axial one due to reduced 1,3 diaxial interactions. As a result, all NH axial product was converted to the equatorial isomer during subsequent steps in the synthesis. NMR and ab initio experiments confirmed the North-East structure of the 1',2'-azetidine locked nucleoside and North conformation of aza-ENA-T locked nucleosides with a chair conformation of the piperidine ring.The amino modified nucleosides were incorporated into different positions of a 15mer oligonucleotide. The azetidine modified AONs did not form stable duplexes with complementary RNA (ΔTm ~-1 to -4 °C), but they performed better than previously synthesized isosequential 1',2'-oxetane modified oligonucleotides. The 2',4'-aza-ENA-T modified oligonucleotide, on the other hand, showed excellent target affinity with complementary RNA (ΔTm ~+4 °C). The azetidine and aza-ENA-T modified oligonucleotides showed significant stability in the presence of human serum and snake venom phosphodiesterase (3'-exonuclease) as compared to the unmodified native sequence. The singly modified 15mer oligonucleotides were also subjected to RNase H promoted digestion in order to evaluate their potential as effective antisense agents. The effective enzyme activity (kcat/Km) was found to be lower in the modified AONs due to reduced enzyme-substrate binding. However, the catalytic activity of RNase H with these modified-AON:RNA duplexes were higher than observed with the native duplex.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy