SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stegmayr John) "

Sökning: WFRF:(Stegmayr John)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Engert, Andreas, et al. (författare)
  • The European Hematology Association Roadmap for European Hematology Research : a consensus document
  • 2016
  • Ingår i: Haematologica. - Pavia, Italy : Ferrata Storti Foundation (Haematologica). - 0390-6078 .- 1592-8721. ; 101:2, s. 115-208
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at (sic)23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine 'sections' in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients.
  •  
2.
  • Alsafadi, Hani N, et al. (författare)
  • Simultaneous isolation of proximal and distal lung progenitor cells from individual mice using a 3D printed guide reduces proximal cell contamination of distal lung epithelial cell isolations
  • 2022
  • Ingår i: Stem Cell Reports. - : Elsevier BV. - 2213-6711. ; 17:12, s. 2718-2731
  • Tidskriftsartikel (refereegranskat)abstract
    • The respiratory epithelium consists of multiple, functionally distinct cell types and is maintained by regionally specific progenitor populations that repair the epithelium following injury. Several in vitro methods exist for studying lung epithelial repair using primary murine lung cells, but isolation methods are hampered by a lack of surface markers distinguishing epithelial progenitors along the respiratory epithelium. Here, we developed a 3D printed lobe divider (3DLD) to aid in simultaneous isolation of proximal versus distal lung epithelial progenitors from individual mice that give rise to differentiated epithelia in multiple in vitro assays. In contrast to 3DLD-isolated distal progenitor cells, commonly used manual tracheal ligation methods followed by lobe removal resulted in co-isolation of rare proximal cells with distal cells, which altered the transcriptional landscape and size distribution of distal organoids. The 3DLD aids in reproducible isolation of distal versus proximal progenitor populations and minimizes the potential for contaminating populations to confound in vitro assays.
  •  
3.
  • Augusto Silva, Iran, et al. (författare)
  • Formalin-free fixation and xylene-free tissue processing preserves cell-hydrogel interactions for histological evaluation of 3D calcium alginate tissue engineered constructs
  • 2023
  • Ingår i: Frontiers in Biomaterials Science. - 2813-3749. ; 2-2023:1155919
  • Tidskriftsartikel (refereegranskat)abstract
    • Histological evaluation of tissue-engineered products, including hydrogels for cellular encapsulation, is a critical and invaluable tool for assessing the product across multiple stages of its lifecycle from manufacture to implantation. However, many tissue-engineered products are comprised of polymers and hydrogels which are not optimized for use with conventional methods of tissue fixation and histological processing. Routine histology utilizes a combination of chemical fixatives, such as formaldehyde, and solvents such as xylene which have been optimized for use with native biological tissues due to their high protein and lipid content. Previous work has highlighted the challenges associated with processing hydrogels for routine histology due to their high water content and lack of diverse chemical moieties amenable for tissue fixation with traditional fixatives. Thus, hydrogel-based tissue engineering products are prone to histological artifacts during their validation which can lead to challenges in correctly interpreting results. In addition, chemicals used in conventional histological approaches are associated with significant health and environmental concerns due to their toxicity and there is thus an urgent need to identify suitable replacements. Here we use a multifactorial design of experiments approach to identify processing parameters capable of preserving cell-biomaterial interactions in a prototypical hydrogel system: ionically crosslinked calcium alginate. We identify a formalin free fixative which better retains cell-biomaterial interactions and calcium alginate hydrogel integrity as compared to the state-of-the-art formalin-based approaches. In addition, we demonstrate that this approach is compatible with a diversity of manufacturing techniques used to fabricate calcium alginate-based scaffolds for tissue engineering and cell therapy, including histological evaluation of cellular encapsulation in 3D tubes and thin tissue engineering scaffolds (∼50 μm). Furthermore, we show that formalin-free fixation can be used to retain cell-biomaterial interactions and hydrogel architecture in hybrid alginate-gelatin based scaffolds for use with histology and scanning electron microscopy. Taken together, these findings are a significant step forward towards improving histological evaluation of ionically crosslinked calcium alginate hydrogels and help make their validation less toxic, thus more environmentally friendly and sustainable.
  •  
4.
  • Boza-Serrano, Antonio, et al. (författare)
  • Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer’s disease
  • 2019
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 138:2, s. 251-273
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer’s disease (AD) is a progressive neurodegenerative disease in which the formation of extracellular aggregates of amyloid beta (Aβ) peptide, fibrillary tangles of intraneuronal tau and microglial activation are major pathological hallmarks. One of the key molecules involved in microglial activation is galectin-3 (gal3), and we demonstrate here for the first time a key role of gal3 in AD pathology. Gal3 was highly upregulated in the brains of AD patients and 5xFAD (familial Alzheimer’s disease) mice and found specifically expressed in microglia associated with Aβ plaques. Single-nucleotide polymorphisms in the LGALS3 gene, which encodes gal3, were associated with an increased risk of AD. Gal3 deletion in 5xFAD mice attenuated microglia-associated immune responses, particularly those associated with TLR and TREM2/DAP12 signaling. In vitro data revealed that gal3 was required to fully activate microglia in response to fibrillar Aβ. Gal3 deletion decreased the Aβ burden in 5xFAD mice and improved cognitive behavior. Interestingly, a single intrahippocampal injection of gal3 along with Aβ monomers in WT mice was sufficient to induce the formation of long-lasting (2 months) insoluble Aβ aggregates, which were absent when gal3 was lacking. High-resolution microscopy (stochastic optical reconstruction microscopy) demonstrated close colocalization of gal3 and TREM2 in microglial processes, and a direct interaction was shown by a fluorescence anisotropy assay involving the gal3 carbohydrate recognition domain. Furthermore, gal3 was shown to stimulate TREM2–DAP12 signaling in a reporter cell line. Overall, our data support the view that gal3 inhibition may be a potential pharmacological approach to counteract AD.
  •  
5.
  • De Santis, Martina M, et al. (författare)
  • Extracellular-Matrix-Reinforced Bioinks for 3D Bioprinting Human Tissue
  • 2021
  • Ingår i: Advanced Materials. - : Wiley. - 1521-4095 .- 0935-9648. ; 33:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent advances in 3D bioprinting allow for generating intricate structures with dimensions relevant for human tissue, but suitable bioinks for producing translationally relevant tissue with complex geometries remain unidentified. Here, a tissue-specific hybrid bioink is described, composed of a natural polymer, alginate, reinforced with extracellular matrix derived from decellularized tissue (rECM). rECM has rheological and gelation properties beneficial for 3D bioprinting while retaining biologically inductive properties supporting tissue maturation ex vivo and in vivo. These bioinks are shear thinning, resist cell sedimentation, improve viability of multiple cell types, and enhance mechanical stability in hydrogels derived from them. 3D printed constructs generated from rECM bioinks suppress the foreign body response, are pro-angiogenic and support recipient-derived de novo blood vessel formation across the entire graft thickness in a murine model of transplant immunosuppression. Their proof-of-principle for generating human tissue is demonstrated by 3D bioprinting human airways composed of regionally specified primary human airway epithelial progenitor and smooth muscle cells. Airway lumens remained patent with viable cells for one month in vitro with evidence of differentiation into mature epithelial cell types found in native human airways. rECM bioinks are a promising new approach for generating functional human tissue using 3D bioprinting.
  •  
6.
  • Delaine, Tamara, et al. (författare)
  • Galectin-3-Binding Glycomimetics that Strongly Reduce Bleomycin-Induced Lung Fibrosis and Modulate Intracellular Glycan Recognition
  • 2016
  • Ingår i: ChemBioChem. - : Wiley. - 1439-4227. ; 17:18, s. 1759-1770
  • Tidskriftsartikel (refereegranskat)abstract
    • Discovery of glycan-competitive galectin-3-binding compounds that attenuate lung fibrosis in a murine model and that block intracellular galectin-3 accumulation at damaged vesicles, hence revealing galectin-3-glycan interactions involved in fibrosis progression and in intracellular galectin-3 activities, is reported. 3,3'-Bis-(4-aryltriazol-1-yl)thiodigalactosides were synthesized and evaluated as antagonists of galectin-1, -2, -3, and -4 N-terminal, -4 C-terminal, -7 and -8 N-terminal, -9 N-terminal, and -9 C-terminal domains. Compounds displaying low-nanomolar affinities for galectins-1 and -3 were identified in a competitive fluorescence anisotropy assay. X-ray structural analysis of selected compounds in complex with galectin-3, together with galectin-3 mutant binding experiments, revealed that both the aryltriazolyl moieties and fluoro substituents on the compounds are involved in key interactions responsible for exceptional affinities towards galectin-3. The most potent galectin-3 antagonist was demonstrated to act in an assay monitoring galectin-3 accumulation upon amitriptyline-induced vesicle damage, visualizing a biochemically/medically relevant intracellular lectin-carbohydrate binding event and that it can be blocked by a small molecule. The same antagonist administered intratracheally attenuated bleomycin-induced pulmonary fibrosis in a mouse model with a dose/response profile comparing favorably with that of oral administration of the marketed antifibrotic compound pirfenidone.
  •  
7.
  • Ejserholm, Fredrik, et al. (författare)
  • Biocompatibility of a polymer based on Off-Stoichiometry Thiol-Enes + Epoxy (OSTE+) for neural implants.
  • 2015
  • Ingår i: Biomaterials research. - : Springer Science and Business Media LLC. - 2055-7124. ; 19:19, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • The flexibility of implantable neural probes has increased during the last 10 years, starting with stiff materials such as silicone to more flexible materials like polyimide. We have developed a novel polymer based on Off-Stoichiometry Thiol-Enes + Epoxy (OSTE+, consisting of a thiol, two allyls, an epoxy resin and two initiators), which is up to 100 times more flexible than polyimide. Since a flexible neural probe should be more biocompatible than a stiff probe, an OSTE+ probe should be more biocompatible than one composed of a more rigid material. We have investigated the toxicity of OSTE+ as well as of OSTE+ that had been incubated in water for a week (OSTE+H2O) using MTT assays with mouse L929 fibroblasts. We found that OSTE+ showed cytotoxicity, but OSTE+H2O did not. Extracts were analyzed using LC-MS and GC-MS in order to identify leaked chemicals.
  •  
8.
  • Huang, Xiaoli, et al. (författare)
  • The Molecular Basis for Inhibition of Stemlike Cancer Cells by Salinomycin
  • 2018
  • Ingår i: ACS Central Science. - : American Chemical Society (ACS). - 2374-7943 .- 2374-7951. ; 4:6, s. 760-767
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumors are phenotypically heterogeneous and include subpopulations of cancer cells with stemlike properties. The natural product salinomycin, a K+-selective ionophore, was recently found to exert selectivity against such cancer stem cells. This selective effect is thought to be due to inhibition of the Wnt signaling pathway, but the mechanistic basis remains unclear. Here, we develop a functionally competent fluorescent conjugate of salinomycin to investigate the molecular mechanism of this compound. By subcellular imaging, we demonstrate a rapid cellular uptake of the conjugate and accumulation in the endoplasmic reticulum (ER). This localization is connected to induction of Ca2+ release from the ER into the cytosol. Depletion of Ca2+ from the ER induces the unfolded protein response as shown by global mRNA analysis and Western blot analysis of proteins in the pathway. In particular, salinomycin-induced ER Ca2+ depletion up-regulates C/EBP homologous protein (CHOP), which inhibits Wnt signaling by down-regulating β-catenin. The increased cytosolic Ca2+ also activates protein kinase C, which has been shown to inhibit Wnt signaling. These results reveal that salinomycin acts in the ER membrane of breast cancer cells to cause enhanced Ca2+ release into the cytosol, presumably by mediating a counter-flux of K+ ions. The clarified mechanistic picture highlights the importance of ion fluxes in the ER as an entry to inducing phenotypic effects and should facilitate rational development of cancer treatments.
  •  
9.
  • Langwiński, Wojciech, et al. (författare)
  • Allergic inflammation in lungs and nasal epithelium of rat model is regulated by tissue-specific miRNA expression
  • 2022
  • Ingår i: Molecular Immunology. - : Elsevier BV. - 0161-5890. ; 147, s. 115-125
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Atopic asthma and allergic rhinitis are common chronic inflammatory diseases affecting lower airways and nasal mucosa, respectively. Several reports demonstrated frequent co-occurrence of these two diseases, however, the exact molecular mechanism has not been described. The present study aimed to investigate if small non-coding RNA might be responsible for the co-occurrence of asthma and allergic rhinitis in an animal model of allergic airway inflammation. Materials and methods: As an in vivo model of allergic airway inflammation, we used Brown Norway rats exposed intranasally to house dust mite (HDM). Histological analysis, total IgE concentration, eosinophil counts and iNOS gene expression were determined to confirm inflammatory changes. Small RNA sequencing in the lung tissue and nasal epithelium was performed with TruSeq Small RNA Library Preparation Kit and analyzed using the BaseSpace tool. Validation of sequencing results was performed using qPCR. To assess the functional role of hsa-miR-223–3p, we transfected normal human bronchial epithelial (NHBE) cells with specific LNA-inhibitor and measured phosphorylated protein level of NF-kB with ELISA. Expression analysis of NF-kB pathway-related genes was performed using qPCR with SYBR Green and analyzed in DataAssist v3.01. Statistical analysis were done with STATISTICA version 13. Results: We found 9 miRNA genes differentially expressed in the lungs of allergic rats. In nasal epithelium, only rno-miR-184 was upregulated in animals exposed to HDM. Validation with qPCR confirmed increased expression only for rno-miR-223–3p in the lungs from allergic rats. The expression of this miRNA was also increased in normal bronchial epithelial ALI cell culture stimulated with IL-13, but not in cells cultured in monolayer due to the low mRNA level of IL13RA1 and IL13RA2. Transfecting NHBE cells with hsa-miR-223–3p inhibitor increased the amount of phosphorylated NF-kB protein level and expression of MUC5AC, CCL24 and TSLP genes. Conclusions: These findings suggest that miRNAs that regulate allergic inflammation in the lungs and nasal epithelium are specific for upper and lower airways. Furthermore, our study provides new insight on the role of hsa-miR-223–3p, that via targeting NF-kB signaling pathway, regulates the expression of MUC5AC, CCL24 and TSLP. Taken together, our study suggests that miR-223–3p is a regulator of allergic inflammation and could potentially be used to develop novel and targeted therapy for asthma.
  •  
10.
  • Melo-Narváez, M. Camila, et al. (författare)
  • Lung regeneration : implications of the diseased niche and ageing
  • 2020
  • Ingår i: European Respiratory Review. - : European Respiratory Society (ERS). - 0905-9180 .- 1600-0617. ; 29:157
  • Tidskriftsartikel (refereegranskat)abstract
    • Most chronic and acute lung diseases have no cure, leaving lung transplantation as the only option. Recent work has improved our understanding of the endogenous regenerative capacity of the lung and has helped identification of different progenitor cell populations, as well as exploration into inducing endogenous regeneration through pharmaceutical or biological therapies. Additionally, alternative approaches that aim at replacing lung progenitor cells and their progeny through cell therapy, or whole lung tissue through bioengineering approaches, have gained increasing attention. Although impressive progress has been made, efforts at regenerating functional lung tissue are still ineffective. Chronic and acute lung diseases are most prevalent in the elderly and alterations in progenitor cells with ageing, along with an increased inflammatory milieu, present major roadblocks for regeneration. Multiple cellular mechanisms, such as cellular senescence and mitochondrial dysfunction, are aberrantly regulated in the aged and diseased lung, which impairs regeneration. Existing as well as new human in vitro models are being developed, improved and adapted in order to study potential mechanisms of lung regeneration in different contexts. This review summarises recent advances in understanding endogenous as well as exogenous regeneration and the development of in vitro models for studying regenerative mechanisms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21
Typ av publikation
tidskriftsartikel (18)
doktorsavhandling (1)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (20)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Stegmayr, John (20)
Leffler, Hakon (7)
Wagner, Darcy E (7)
Oredsson, Stina (5)
Alsafadi, Hani N. (5)
Lindstedt, Sandra (4)
visa fler...
Westergren-Thorsson, ... (2)
Rolandsson Enes, Sar ... (2)
Nilsson, Ulf (2)
Ptasinski, Victoria (2)
Mittendorfer, Margar ... (2)
Murray, Lynne A (2)
Johansson, Fredrik (1)
Wallman, Lars (1)
Campo, Elias (1)
Linse, Sara (1)
Krasnodembskaya, Ann ... (1)
Weiss, Daniel J. (1)
Fitzgibbon, Jude (1)
Graf, Thomas (1)
Macintyre, Elizabeth (1)
Swärd, Karl (1)
Ljungman, Per (1)
Cant, Andrew (1)
Mohlin, Sofie (1)
Davi, Frederic (1)
Stamatopoulos, Kosta ... (1)
Zolla, Lello (1)
Deierborg, Tomas (1)
Englund, Elisabet (1)
Massoumi, Ramin (1)
Goldschmidt, Hartmut (1)
Cumpstey, Ian (1)
Elowsson, Linda (1)
Albinsson, Sebastian (1)
Daoud, Fatima (1)
Persson, Lo (1)
Flygare, Johan (1)
Medvinsky, Alexander (1)
Kadir, Rezan (1)
Bengtsson, Martin (1)
Russo, Roberta (1)
Real, Luis M. (1)
Ruiz, Rocío (1)
Königshoff, Melanie (1)
Silva, Iran (1)
Harrison, Claire (1)
Griesshammer, Martin (1)
Olsson, Martin (1)
Stegmayr, Bernd (1)
visa färre...
Lärosäte
Lunds universitet (21)
Umeå universitet (1)
Linköpings universitet (1)
Karolinska Institutet (1)
Språk
Engelska (21)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (20)
Naturvetenskap (3)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy