SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stein Helge) "

Sökning: WFRF:(Stein Helge)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amici, Julia, et al. (författare)
  • A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030
  • 2022
  • Ingår i: Advanced Energy Materials. - : John Wiley & Sons. - 1614-6832 .- 1614-6840. ; 12:17
  • Forskningsöversikt (refereegranskat)abstract
    • This roadmap presents the transformational research ideas proposed by "BATTERY 2030+," the European large-scale research initiative for future battery chemistries. A "chemistry-neutral" roadmap to advance battery research, particularly at low technology readiness levels, is outlined, with a time horizon of more than ten years. The roadmap is centered around six themes: 1) accelerated materials discovery platform, 2) battery interface genome, with the integration of smart functionalities such as 3) sensing and 4) self-healing processes. Beyond chemistry related aspects also include crosscutting research regarding 5) manufacturability and 6) recyclability. This roadmap should be seen as an enabling complement to the global battery roadmaps which focus on expected ultrahigh battery performance, especially for the future of transport. Batteries are used in many applications and are considered to be one technology necessary to reach the climate goals. Currently the market is dominated by lithium-ion batteries, which perform well, but despite new generations coming in the near future, they will soon approach their performance limits. Without major breakthroughs, battery performance and production requirements will not be sufficient to enable the building of a climate-neutral society. Through this "chemistry neutral" approach a generic toolbox transforming the way batteries are developed, designed and manufactured, will be created.
  •  
2.
  • Bhowmik, Arghya, et al. (författare)
  • Implications of the BATTERY 2030+ AI-Assisted Toolkit on Future Low-TRL Battery Discoveries and Chemistries
  • 2022
  • Ingår i: Advanced Energy Materials. - : John Wiley & Sons. - 1614-6832 .- 1614-6840. ; 12:17
  • Forskningsöversikt (refereegranskat)abstract
    • BATTERY 2030+ targets the development of a chemistry neutral platform for accelerating the development of new sustainable high-performance batteries. Here, a description is given of how the AI-assisted toolkits and methodologies developed in BATTERY 2030+ can be transferred and applied to representative examples of future battery chemistries, materials, and concepts. This perspective highlights some of the main scientific and technological challenges facing emerging low-technology readiness level (TRL) battery chemistries and concepts, and specifically how the AI-assisted toolkit developed within BIG-MAP and other BATTERY 2030+ projects can be applied to resolve these. The methodological perspectives and challenges in areas like predictive long time- and length-scale simulations of multi-species systems, dynamic processes at battery interfaces, deep learned multi-scaling and explainable AI, as well as AI-assisted materials characterization, self-driving labs, closed-loop optimization, and AI for advanced sensing and self-healing are introduced. A description is given of tools and modules can be transferred to be applied to a select set of emerging low-TRL battery chemistries and concepts covering multivalent anodes, metal-sulfur/oxygen systems, non-crystalline, nano-structured and disordered systems, organic battery materials, and bulk vs. interface-limited batteries.
  •  
3.
  • Castelli, Ivano E., et al. (författare)
  • Data Management Plans : the Importance of Data Management in the BIG-MAP Project
  • 2021
  • Ingår i: Batteries & Supercaps. - : John Wiley & Sons. - 2566-6223. ; 4:12, s. 1803-1812
  • Tidskriftsartikel (refereegranskat)abstract
    • Open access to research data is increasingly important for accelerating research. Grant authorities therefore request detailed plans for how data is managed in the projects they finance. We have recently developed such a plan for the EU H2020 BIG-MAP project-a cross-disciplinary project targeting disruptive battery-material discoveries. Essential for reaching the goal is extensive sharing of research data across scales, disciplines and stakeholders, not limited to BIG-MAP and the European BATTERY 2030+ initiative but within the entire battery community. The key challenges faced in developing the data management plan for such a large and complex project were to generate an overview of the enormous amount of data that will be produced, to build an understanding of the data flow within the project and to agree on a roadmap for making all data FAIR (findable, accessible, interoperable, reusable). This paper describes the process we followed and how we structured the plan.
  •  
4.
  • Fichtner, Maximilian, et al. (författare)
  • Rechargeable Batteries of the Future-The State of the Art from a BATTERY 2030+Perspective
  • 2022
  • Ingår i: Advanced Energy Materials. - : John Wiley & Sons. - 1614-6832 .- 1614-6840. ; 12:17
  • Forskningsöversikt (refereegranskat)abstract
    • The development of new batteries has historically been achieved through discovery and development cycles based on the intuition of the researcher, followed by experimental trial and error-often helped along by serendipitous breakthroughs. Meanwhile, it is evident that new strategies are needed to master the ever-growing complexity in the development of battery systems, and to fast-track the transfer of findings from the laboratory into commercially viable products. This review gives an overview over the future needs and the current state-of-the art of five research pillars of the European Large-Scale Research Initiative BATTERY 2030+, namely 1) Battery Interface Genome in combination with a Materials Acceleration Platform (BIG-MAP), progress toward the development of 2) self-healing battery materials, and methods for operando, 3) sensing to monitor battery health. These subjects are complemented by an overview over current and up-coming strategies to optimize 4) manufacturability of batteries and efforts toward development of a circular battery economy through implementation of 5) recyclability aspects in the design of the battery.
  •  
5.
  • Ganesan, Priya, et al. (författare)
  • Fluorine-Substituted Halide Solid Electrolytes with Enhanced Stability toward the Lithium Metal
  • 2023
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 15:32, s. 38391-38402
  • Tidskriftsartikel (refereegranskat)abstract
    • The high ionic conductivityand good oxidation stability of halide-basedsolid electrolytes evoke strong interest in this class of materials.Nonetheless, the superior oxidative stability compared to sulfidescomes at the expense of limited stability toward reduction and instabilityagainst metallic lithium anodes, which hinders their practical use.In this context, the gradual fluorination of Li2ZrCl6-x F x (0 & LE; x & LE; 1.2) is proposed to enhance thestability toward lithium-metal anodes. The mechanochemically synthesizedfluorine-substituted compounds show the expected distorted local structure(M2-M3 site disorder) and significant change in the overallLi-ion migration barrier. Theoretical calculations reveal an approximateminimum energy path for Li2ZrCl6-x F x (x = 0 and0.5) with an increase in the Li+ migration energy barrierfor Li2ZrCl5.5F0.5 in comparisonto Li2ZrCl6. However, it is found that the fluorine-substitutedcompound exhibits substantially lower polarization after 800 h oflithium stripping and plating owing to enhanced interfacial stabilityagainst the lithium metal, as revealed by density functional theoryand ex situ X-ray photoelectron spectroscopy, thanks to the formationof a fluorine-rich passivating interphase.
  •  
6.
  • Kooistra, Lammert, et al. (författare)
  • Reviews and syntheses : Remotely sensed optical time series for monitoring vegetation productivity
  • 2024
  • Ingår i: Biogeosciences. - 1726-4170. ; 21:2, s. 473-511
  • Forskningsöversikt (refereegranskat)abstract
    • Vegetation productivity is a critical indicator of global ecosystem health and is impacted by human activities and climate change. A wide range of optical sensing platforms, from ground-based to airborne and satellite, provide spatially continuous information on terrestrial vegetation status and functioning. As optical Earth observation (EO) data are usually routinely acquired, vegetation can be monitored repeatedly over time, reflecting seasonal vegetation patterns and trends in vegetation productivity metrics. Such metrics include gross primary productivity, net primary productivity, biomass, or yield. To summarize current knowledge, in this paper we systematically reviewed time series (TS) literature for assessing state-of-the-art vegetation productivity monitoring approaches for different ecosystems based on optical remote sensing (RS) data. As the integration of solar-induced fluorescence (SIF) data in vegetation productivity processing chains has emerged as a promising source, we also include this relatively recent sensor modality. We define three methodological categories to derive productivity metrics from remotely sensed TS of vegetation indices or quantitative traits: (i) trend analysis and anomaly detection, (ii) land surface phenology, and (iii) integration and assimilation of TS-derived metrics into statistical and process-based dynamic vegetation models (DVMs). Although the majority of used TS data streams originate from data acquired from satellite platforms, TS data from aircraft and unoccupied aerial vehicles have found their way into productivity monitoring studies. To facilitate processing, we provide a list of common toolboxes for inferring productivity metrics and information from TS data. We further discuss validation strategies of the RS data derived productivity metrics: (1) using in situ measured data, such as yield; (2) sensor networks of distinct sensors, including spectroradiometers, flux towers, or phenological cameras; and (3) inter-comparison of different productivity metrics. Finally, we address current challenges and propose a conceptual framework for productivity metrics derivation, including fully integrated DVMs and radiative transfer models here labelled as "Digital Twin". This novel framework meets the requirements of multiple ecosystems and enables both an improved understanding of vegetation temporal dynamics in response to climate and environmental drivers and enhances the accuracy of vegetation productivity monitoring.
  •  
7.
  • Ratajczak-Tretel, Barbara, et al. (författare)
  • Atrial fibrillation in cryptogenic stroke and transient ischaemic attack – The Nordic Atrial Fibrillation and Stroke (NOR-FIB) Study : Rationale and design
  • 2019
  • Ingår i: European Stroke Journal. - : SAGE Publications. - 2396-9873 .- 2396-9881. ; 4:2, s. 172-180
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Paroxysmal atrial fibrillation is often suspected as a probable cause of cryptogenic stroke. Continuous long-term ECG monitoring using insertable cardiac monitors is a clinically effective technique to screen for atrial fibrillation and superior to conventional follow-up in cryptogenic stroke. However, more studies are needed to identify factors which can help selecting patients with the highest possibility of detecting atrial fibrillation with prolonged rhythm monitoring. The clinical relevance of short-term atrial fibrillation, the need for medical intervention and the evaluation as to whether intervention results in improved clinical outcomes should be assessed. Method: The Nordic Atrial Fibrillation and Stroke Study is an international, multicentre, prospective, observational trial evaluating the occurrence of occult atrial fibrillation in cryptogenic stroke and transient ischaemic attack. Patients with cryptogenic stroke or transient ischaemic attack from the Nordic countries are included and will have the Reveal LINQ® Insertable cardiac monitor system implanted for 12 months for atrial fibrillation detection. Biomarkers which can be used as predictors for atrial fibrillation and may identify patients, who could derive the most clinical benefit from the detection of atrial fibrillation by prolonged monitoring, are being studied. Conclusion: The primary endpoint is atrial fibrillation burden within 12 months of continuous rhythm monitoring. Secondary endpoints are atrial fibrillation burden within six months, levels of biomarkers predicting atrial fibrillation, CHA 2 DS 2 -VASc score, incidence of recurrent stroke or transient ischaemic attack, use of anticoagulation and antiarrhythmic drugs, and quality of life measurements. The clinical follow-up period is 12 months. The study started in 2017 and the completion is expected at the end of 2020.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy