SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Steinbrener J.) "

Search: WFRF:(Steinbrener J.)

  • Result 1-10 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Boutet, S., et al. (author)
  • High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography
  • 2012
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 337:6092, s. 362-364
  • Journal article (peer-reviewed)abstract
    • Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules.
  •  
2.
  • Pedersoli, E., et al. (author)
  • Mesoscale morphology of airborne core-shell nanoparticle clusters : x-ray laser coherent diffraction imaging
  • 2013
  • In: Journal of Physics B. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 46:16 SI, s. 164033-
  • Journal article (peer-reviewed)abstract
    • Unraveling the complex morphology of functional materials like core-shell nanoparticles and its evolution in different environments is still a challenge. Only recently has the single-particle coherent diffraction imaging (CDI), enabled by the ultrabright femtosecond free-electron laser pulses, provided breakthroughs in understanding mesoscopic morphology of nanoparticulate matter. Here, we report the first CDI results for Co@SiO2 core-shell nanoparticles randomly clustered in large airborne aggregates, obtained using the x-ray free-electron laser at the Linac Coherent Light Source. Our experimental results compare favourably with simulated diffraction patterns for clustered Co@SiO2 nanoparticles with similar to 10 nm core diameter and similar to 30 nm shell outer diameter, which confirms the ability to resolve the mesoscale morphology of complex metastable structures. The findings in this first morphological study of core-shell nanomaterials are a solid base for future time-resolved studies of dynamic phenomena in complex nanoparticulate matter using x-ray lasers.
  •  
3.
  • Duane Loh, N., et al. (author)
  • Profiling structured beams using injected aerosols
  • 2012
  • In: Proceedings of SPIE. - : SPIE. - 9780819492210 ; , s. 850403-
  • Conference paper (peer-reviewed)abstract
    • Profiling structured beams produced by X-ray free-electron lasers (FELs) is crucial to both maximizing signal intensity for weakly scattering targets and interpreting their scattering patterns. Earlier ablative imprint studies describe how to infer the X-ray beam profile from the damage that an attenuated beam inflicts on a substrate. However, the beams in-situ profile is not directly accessible with imprint studies because the damage profile could be different from the actual beam profile. On the other hand, although a Shack-Hartmann sensor is capable of in-situ profiling, its lenses may be quickly damaged at the intense focus of hard X-ray FEL beams. We describe a new approach that probes the in-situ morphology of the intense FEL focus. By studying the translations in diffraction patterns from an ensemble of randomly injected sub-micron latex spheres, we were able to determine the non-Gaussian nature of the intense FEL beam at the Linac Coherent Light Source (SLAC National Laboratory) near the FEL focus. We discuss an experimental application of such a beam-profiling technique, and the limitations we need to overcome before it can be widely applied.
  •  
4.
  • Loh, N. D., et al. (author)
  • Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight
  • 2012
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 486:7404, s. 513-517
  • Journal article (peer-reviewed)abstract
    • The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology(1) to climate science(2), yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate(3); visible light scattering provides insufficient resolution(4); and X-ray synchrotron studies have been limited to ensembles of particles(5). Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source(6) free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins(7), vibrational energy transfer by the hydrodynamic interaction of amino acids(8), and large-scale production of nanoscale structures by flame synthesis(9).
  •  
5.
  • Martin, A. V., et al. (author)
  • Femtosecond dark-field imaging with an X-ray free electron laser
  • 2012
  • In: Optics Express. - 1094-4087. ; 20:12, s. 13501-13512
  • Journal article (peer-reviewed)abstract
    • The emergence of femtosecond diffractive imaging with X-ray lasers has enabled pioneering structural studies of isolated particles, such as viruses, at nanometer length scales. However, the issue of missing low frequency data significantly limits the potential of X-ray lasers to reveal sub-nanometer details of micrometer-sized samples. We have developed a new technique of dark-field coherent diffractive imaging to simultaneously overcome the missing data issue and enable us to harness the unique contrast mechanisms available in dark-field microscopy. Images of airborne particulate matter (soot) up to two microns in length were obtained using single-shot diffraction patterns obtained at the Linac Coherent Light Source, four times the size of objects previously imaged in similar experiments. This technique opens the door to femtosecond diffractive imaging of a wide range of micrometer-sized materials that exhibit irreproducible complexity down to the nanoscale, including airborne particulate matter, small cells, bacteria and gold-labeled biological samples.
  •  
6.
  • Martin, A. V., et al. (author)
  • Noise-robust coherent diffractive imaging with a single diffraction pattern
  • 2012
  • In: Optics Express. - 1094-4087. ; 20:15, s. 16650-16661
  • Journal article (peer-reviewed)abstract
    • The resolution of single-shot coherent diffractive imaging at X-ray free-electron laser facilities is limited by the low signal-to-noise level of diffraction data at high scattering angles. The iterative reconstruction methods, which phase a continuous diffraction pattern to produce an image, must be able to extract information from these weak signals to obtain the best quality images. Here we show how to modify iterative reconstruction methods to improve tolerance to noise. The method is demonstrated with the hybrid input-output method on both simulated data and single-shot diffraction patterns taken at the Linac Coherent Light Source. (C) 2012 Optical Society of America
  •  
7.
  • Kupitz, Christopher, et al. (author)
  • Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser
  • 2014
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 513:7517, s. 261-265
  • Journal article (peer-reviewed)abstract
    • Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth's oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the 'dangler' Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules.
  •  
8.
  • Johansson, Linda C, 1983, et al. (author)
  • Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography.
  • 2013
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 4
  • Journal article (peer-reviewed)abstract
    • Serial femtosecond crystallography is an X-ray free-electron-laser-based method with considerable potential to have an impact on challenging problems in structural biology. Here we present X-ray diffraction data recorded from microcrystals of the Blastochloris viridis photosynthetic reaction centre to 2.8Å resolution and determine its serial femtosecond crystallography structure to 3.5Å resolution. Although every microcrystal is exposed to a dose of 33MGy, no signs of X-ray-induced radiation damage are visible in this integral membrane protein structure.
  •  
9.
  • Loh, N. Duane, et al. (author)
  • Sensing the wavefront of x-ray free-electron lasers using aerosol spheres
  • 2013
  • In: Optics Express. - 1094-4087. ; 21:10, s. 12385-12394
  • Journal article (peer-reviewed)abstract
    • Characterizing intense, focused x-ray free electron laser (FEL) pulses is crucial for their use in diffractive imaging. We describe how the distribution of average phase tilts and intensities on hard x-ray pulses with peak intensities of 1021 W/m(2) can be retrieved from an ensemble of diffraction patterns produced by 70 nm-radius polystyrene spheres, in a manner that mimics wavefront sensors. Besides showing that an adaptive geometric correction may be necessary for diffraction data from randomly injected sample sources, our paper demonstrates the possibility of collecting statistics on structured pulses using only the diffraction patterns they generate and highlights the imperative to study its impact on single-particle diffractive imaging.
  •  
10.
  • Park, Hyung Joo, et al. (author)
  • Toward unsupervised single-shot diffractive imaging of heterogeneous particles using X-ray free-electron lasers
  • 2013
  • In: Optics Express. - 1094-4087. ; 21:23, s. 28729-28742
  • Journal article (peer-reviewed)abstract
    • Single shot diffraction imaging experiments via X-ray free-electron lasers can generate as many as hundreds of thousands of diffraction patterns of scattering objects. Recovering the real space contrast of a scattering object from these patterns currently requires a reconstruction process with user guidance in a number of steps, introducing severe bottlenecks in data processing. We present a series of measures that replace user guidance with algorithms that reconstruct contrasts in an unsupervised fashion. We demonstrate the feasibility of automating the reconstruction process by generating hundreds of contrasts obtained from soot particle diffraction experiments.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view