SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stenfeldt K) "

Sökning: WFRF:(Stenfeldt K)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Elander, Johanna, et al. (författare)
  • Pathogenic mtDNA variants, in particular single large-scale mtDNA deletions, are strongly associated with post-lingual onset sensorineural hearing loss in primary mitochondrial disease
  • 2022
  • Ingår i: Molecular Genetics and Metabolism. - : Elsevier BV. - 1096-7192. ; 137:3, s. 230-238
  • Tidskriftsartikel (refereegranskat)abstract
    • In this retrospective cohort study of 193 consecutive subjects with primary mitochondrial disease (PMD) seen at the Children's Hospital of Philadelphia Mitochondrial Medicine Frontier Program, we assessed prevalence, severity, and time of onset of sensorineural hearing loss (SNHL) for PMD cases with different genetic etiologies. Subjects were grouped by genetic diagnosis: mitochondrial DNA (mtDNA) pathogenic variants, single large-scale mtDNA deletions (SLSMD), or nuclear DNA (nDNA) pathogenic variants. SNHL was audiometrically confirmed in 27% of PMD subjects (20% in mtDNA pathogenic variants, 58% in SLSMD and 25% in nDNA pathogenic variants). SLSMD had the highest odds ratio for SNHL. SNHL onset was post-lingual in 79% of PMD cases, interestingly including all cases with mtDNA pathogenic variants and SLSMD, which was significantly different from PMD cases caused by nDNA pathogenic variants. SNHL onset during school age was predominant in this patient population. Regular audiologic assessment is important for PMD patients, and PMD of mtDNA etiology should be considered as a differential diagnosis in pediatric patients and young adults with post-lingual SNHL onset, particularly in the setting of multi-system clinical involvement. Pathogenic mtDNA variants and SLSMD are less likely etiologies in subjects with congenital, pre-lingual onset SNHL.
  •  
2.
  •  
3.
  • Seidel, Y.E., et al. (författare)
  • Oscillatory behaviour in Galvanostatic Formaldehyde Oxidation on Nanostructured Pt/Glassy Carbon Model Electrodes
  • 2010
  • Ingår i: ChemPhysChem. - : Wiley. - 1439-7641 .- 1439-4235. ; 11:7, s. 1405-1415
  • Tidskriftsartikel (refereegranskat)abstract
    • The electrocatalytic oxidation of formaldehyde, which results in CO, and HCOOH formation, was investigated under galvanostatic conditions on nanostructured Pt/glassy carbon (GC) electrodes fabricated by employing colloidal lithography (CL). The measurements were performed on structurally well-defined model electrodes of different Pt surface coverages under different applied currents (current densities) and at constant electrolyte transport in a thin-layer flow cell connected to a differential electrochemical mass spectrometry (DEMS) setup to monitor the dynamic response of the reaction selectivity under these conditions. Periodic oscillations of the electrode potential and the CO, formation rate appear not only for a continuous Pt film, but also for the nanostructured Pt/GC electrodes when a critical current density is exceeded. The critical current density for achieving regular osillation patterns increased with decreasing Pt nanodisk density. Lower oscillation frequencies of the electrode potential and lower CO2 formation rate for nanostructured Pt/GC electrodes compared to continuous Pt film at similar applied current densities suggest that transport processes play an essential role. Moreover, from the simple periodic response of the nanostructured electrodes it follows that all individual Pt disks in the array oscillate in synchrony. This result is discussed in terms of the different modes of spatial coupling present in the system: global coupling, migration coupling and mass transport of the essential chemical species, and the coverage of corresponding adsorbates.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy