SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stenkamp E) "

Sökning: WFRF:(Stenkamp E)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Balogh, Larissa M., et al. (författare)
  • Structural Analysis of a Glutathione Transferase A1-1 Mutant Tailored for High Catalytic Efficiency with Toxic Alkenals
  • 2009
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 48:32, s. 7698-7704
  • Tidskriftsartikel (refereegranskat)abstract
    • The specificity of human glutathione transferase (GST) A1-1 is drastically altered to favor alkenal substrates in the GIMFhelix mutant designed to mimic first-sphere interactions utilized by GSTA4-4. This redesign serves as a model for improving our understanding of the structural determinants that contribute to the distinct specificities of alpha class GSTs. Herein we report the first crystal structures of GIMFhelix, both in complex with GSH and in apo form at 1.98 and 2.38 angstrom resolution. In contrast to the preorganized hydrophobic binding pocket that accommodates alkenals in GSTA4-4, GSTA1-1 includes a dynamic alpha 9 helix that undergoes a ligand-dependent localization to complete the active site. Comparisons of the GIMFhelix structures with previously reported structures show a striking similarity with the GSTA4-4 active site obtained within an essentially GSTA1-1 scaffold and reveal the 0 helix assumes a similar localized structure regardless of active site occupancy in a manner resembling that of GSTA4-4. However, Are cannot fully account for all the structural elements important in GSTA4-4 within the mutant's active site. The contribution of Phe10 to the Tyr212-Phe10-Phe220 network prevents complete C-terminal Closure and demonstrates that the presence of Phe10 within the context of a GSTA4-4-like active site may ultimately hinder Phe220, a key C-terminal residue, from effectively contributing to the active site. In total, these results illustrate the remaining structural differences presumably reflected in the previously reported catalytic efficiencies of GIMFhelix and GSTA4-4 and emphasize the F10P mutation as being necessary to completely accomplish the transformation to a highly specific GST from the more promiscuous GSTA1-1 enzyme.
  •  
2.
  • Balogh, Larissa M., et al. (författare)
  • Substrate Specificity Combined with Stereopromiscuity in Glutathione Transferase A4-4-Dependent Metabolism of 4-Hydroxynonenal
  • 2010
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 49:7, s. 1541-1548
  • Tidskriftsartikel (refereegranskat)abstract
    • Conjugation to glutathione (GSH) by glutathione transferase A4-4 (GSTA4-4) is a major route of elimination for the lipid peroxidation product 4-hydroxynonenal (HNE), a toxic compound that contributes to numerous diseases. Both enantiomers of HNE are presumed to be toxic, and GSTA4-4 has negligible stereoselectivity toward them, despite its high catalytic chemospecificity for alkenals. In contrast to the highly flexible, and substrate promiscuous, GSTA1-1 isoform that has poor catalytic efficiency with HNE, GSTA4-4 has been postulated to be a rigid template that is preorganized for HNE metabolism. However, the combination of high substrate chemoselectivity and low substrate stereoselectivity is intriguing. The mechanism by which GSTA4-4 achieves this combination is important, because it must metabolize both enantiomers of HNE to efficiently detoxify the biologically formed mixture. The crystal structures of GSTA4-4 and ail engineered variant of GSTA1-1 with high catalytic efficiency toward HNE, cocrystallized with a GSH-HNE conjugate analogue, demonstrate that GSTA4-4 undergoes no enantiospecific induced fit; instead, the active site residue Arg15 is ideally located to interact with the 4-hydroxyl group of either HNE enantiomer. The results reveal an evolutionary strategy for achieving biologically useful stereopromiscuity toward a toxic racemate, concomitant with high catalytic efficiency and substrate specificity toward ail endogenously formed toxin.
  •  
3.
  • Eilertsen, Mariann, et al. (författare)
  • An EvoDevo Study of Salmonid Visual Opsin Dynamics and Photopigment Spectral Sensitivity
  • 2022
  • Ingår i: Frontiers in Neuroanatomy. - : Frontiers Media S.A.. - 1662-5129. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Salmonids are ideal models as many species follow a distinct developmental program from demersal eggs and a large yolk sac to hatching at an advanced developmental stage. Further, these economically important teleosts inhabit both marine- and freshwaters and experience diverse light environments during their life histories. At a genome level, salmonids have undergone a salmonid-specific fourth whole genome duplication event (Ss4R) compared to other teleosts that are already more genetically diverse compared to many non-teleost vertebrates. Thus, salmonids display phenotypically plastic visual systems that appear to be closely related to their anadromous migration patterns. This is most likely due to a complex interplay between their larger, more gene-rich genomes and broad spectrally enriched habitats; however, the molecular basis and functional consequences for such diversity is not fully understood. This study used advances in genome sequencing to identify the repertoire and genome organization of visual opsin genes (those primarily expressed in retinal photoreceptors) from six different salmonids [Atlantic salmon (Salmo salar), brown trout (Salmo trutta), Chinook salmon (Oncorhynchus tshawytcha), coho salmon (Oncorhynchus kisutch), rainbow trout (Oncorhynchus mykiss), and sockeye salmon (Oncorhynchus nerka)] compared to the northern pike (Esox lucius), a closely related non-salmonid species. Results identified multiple orthologues for all five visual opsin classes, except for presence of a single short-wavelength-sensitive-2 opsin gene. Several visual opsin genes were not retained after the Ss4R duplication event, which is consistent with the concept of salmonid rediploidization. Developmentally, transcriptomic analyzes of Atlantic salmon revealed differential expression within each opsin class, with two of the long-wavelength-sensitive opsins not being expressed before first feeding. Also, early opsin expression in the retina was located centrally, expanding dorsally and ventrally as eye development progressed, with rod opsin being the dominant visual opsin post-hatching. Modeling by spectral tuning analysis and atomistic molecular simulation, predicted the greatest variation in the spectral peak of absorbance to be within the Rh2 class, with a ∼40 nm difference in λmax values between the four medium-wavelength-sensitive photopigments. Overall, it appears that opsin duplication and expression, and their respective spectral tuning profiles, evolved to maximize specialist color vision throughout an anadromous lifecycle, with some visual opsin genes being lost to tailor marine-based vision.
  •  
4.
  • Patel, Dharmeshkumar, et al. (författare)
  • Short-wavelength-sensitive 2 (Sws2) visual photopigment models combined with atomistic molecular simulations to predict spectral peaks of absorbance
  • 2020
  • Ingår i: PloS Computational Biology. - : Public Library Science. - 1553-734X .- 1553-7358. ; 16:10
  • Tidskriftsartikel (refereegranskat)abstract
    • For many species, vision is one of the most important sensory modalities for mediating essential tasks that include navigation, predation and foraging, predator avoidance, and numerous social behaviors. The vertebrate visual process begins when photons of the light interact with rod and cone photoreceptors that are present in the neural retina. Vertebrate visual photopigments are housed within these photoreceptor cells and are sensitive to a wide range of wavelengths that peak within the light spectrum, the latter of which is a function of the type of chromophore used and how it interacts with specific amino acid residues found within the opsin protein sequence. Minor differences in the amino acid sequences of the opsins are known to lead to large differences in the spectral peak of absorbance (i.e. the λmax value). In our prior studies, we developed a new approach that combined homology modeling and molecular dynamics simulations to gather structural information associated with chromophore conformation, then used it to generate statistical models for the accurate prediction of λmax values for photopigments derived from Rh1 and Rh2 amino acid sequences. In the present study, we test our novel approach to predict the λmax of phylogenetically distant Sws2 cone opsins. To build a model that can predict the λmax using our approach presented in our prior studies, we selected a spectrally-diverse set of 11 teleost Sws2 photopigments for which both amino acid sequence information and experimentally measured λmax values are known. The final first-order regression model, consisting of three terms associated with chromophore conformation, was sufficient to predict the λmax of Sws2 photopigments with high accuracy. This study further highlights the breadth of our approach in reliably predicting λmax values of Sws2 cone photopigments, evolutionary-more distant from template bovine RH1, and provided mechanistic insights into the role of known spectral tuning sites.
  •  
5.
  • Scian, Michele, et al. (författare)
  • Comparison of epsilon- and delta-class glutathione S-transferases : the crystal structures of the glutathione S-transferases DmGSTE6 and DmGSTE7 from Drosophila melanogaster
  • 2015
  • Ingår i: Acta Crystallographica Section D. - 0907-4449 .- 1399-0047. ; 71, s. 2089-2098
  • Tidskriftsartikel (refereegranskat)abstract
    • Cytosolic glutathione transferases (GSTs) comprise a large family of enzymes with canonical structures that diverge functionally and structurally among mammals, invertebrates and plants. Whereas mammalian GSTs have been characterized extensively with regard to their structure and function, invertebrate GSTs remain relatively unstudied. The invertebrate GSTs do, however, represent potentially important drug targets for infectious diseases and agricultural applications. In addition, it is essential to fully understand the structure and function of invertebrate GSTs, which play important roles in basic biological processes. Invertebrates harbor delta-and epsilon-class GSTs, which are not found in other organisms. Drosophila melanogaster GSTs (DmGSTs) are likely to contribute to detoxication or antioxidative stress during development, but they have not been fully characterized. Here, the structures of two epsilon-class GSTs from Drosophila, DmGSTE6 and DmGSTE7, are reported at 2.1 and 1.5 angstrom resolution, respectively, and are compared with other GSTs to identify structural features that might correlate with their biological functions. The structures of DmGSTE6 and DmGSTE7 are remarkably similar; the structures do not reveal obvious sources of the minor functional differences that have been observed. The main structural difference between the epsilon-and delta-class GSTs is the longer helix (A8) at the C-termini of the epsilon-class enzymes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy