SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stenke Andrea) "

Sökning: WFRF:(Stenke Andrea)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ball, William T., et al. (författare)
  • Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery
  • 2018
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:2, s. 1379-1394
  • Tidskriftsartikel (refereegranskat)abstract
    • Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60 degrees S and 60 degrees N outside the polar regions (60-90 degrees). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60 degrees S and 60 degrees N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60 degrees S and 60 degrees N. We find that total column ozone between 60 degrees S and 60 degrees N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.
  •  
2.
  • Ball, William T., et al. (författare)
  • Inconsistencies between chemistry-climate models and observed lower stratospheric ozone trends since 1998
  • 2020
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:16, s. 9737-9752
  • Tidskriftsartikel (refereegranskat)abstract
    • The stratospheric ozone layer shields surface life from harmful ultraviolet radiation. Following the Montreal Protocol ban on long-lived ozone-depleting substances (ODSs), rapid depletion of total column ozone (TCO) ceased in the late 1990s, and ozone above 32 km is now clearly recovering. However, there is still no confirmation of TCO recovery, and evidence has emerged that ongoing quasiglobal (60 degrees S-60 degrees N) lower stratospheric ozone decreases may be responsible, dominated by low latitudes (30 degrees S-30 degrees N). Chemistry-climate models (CCMs) used to project future changes predict that lower stratospheric ozone will decrease in the tropics by 2100 but not at mid-latitudes (30-60 degrees). Here, we show that CCMs display an ozone decline similar to that observed in the tropics over 1998-2016, likely driven by an increase in tropical upwelling. On the other hand, mid-latitude lower stratospheric ozone is observed to decrease, while CCMs that specify real-world historical meteorological fields instead show an increase up to present day. However, these cannot be used to simulate future changes; we demonstrate here that free-running CCMs used for projections also show increases. Despite opposing lower stratospheric ozone changes, which should induce opposite temperature trends, CCMs and observed temperature trends agree; we demonstrate that opposing model- observation stratospheric water vapour (SWV) trends, and their associated radiative effects, explain why temperature changes agree in spite of opposing ozone trends. We provide new evidence that the observed mid-latitude trends can be explained by enhanced mixing between the tropics and extratropics. We further show that the temperature trends are consistent with the observed mid-latitude ozone decrease. Together, our results suggest that large-scale circulation changes expected in the future from increased greenhouse gases (GHGs) may now already be underway but that most CCMs do not simulate mid-latitude ozone layer changes well. However, it is important to emphasise that the periods considered here are short, and internal variability that is both intrinsic to each CCM and different to observed historical variability is not well-characterised and can influence trend estimates. Nevertheless, the reason CCMs do not exhibit the observed changes needs to be identified to allow models to be improved in order to build confidence in future projections of the ozone layer.
  •  
3.
  • Zanchettin, Davide, et al. (författare)
  • The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) : experimental design and forcing input data for CMIP6
  • 2016
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 9:8, s. 2701-2719
  • Tidskriftsartikel (refereegranskat)abstract
    • The enhancement of the stratospheric aerosol layer by volcanic eruptions induces a complex set of responses causing global and regional climate effects on a broad range of timescales. Uncertainties exist regarding the climatic response to strong volcanic forcing identified in coupled climate simulations that contributed to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). In order to better understand the sources of these model diversities, the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) has defined a coordinated set of idealized volcanic perturbation experiments to be carried out in alignment with the CMIP6 protocol. VolMIP provides a common stratospheric aerosol data set for each experiment to minimize differences in the applied volcanic forcing. It defines a set of initial conditions to assess how internal climate variability contributes to determining the response. VolMIP will assess to what extent volcanically forced responses of the coupled ocean-atmosphere system are robustly simulated by state-of-the-art coupled climate models and identify the causes that limit robust simulated behavior, especially differences in the treatment of physical processes. This paper illustrates the design of the idealized volcanic perturbation experiments in the VolMIP protocol and describes the common aerosol forcing input data sets to be used.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy