SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stenman Sebastian) "

Sökning: WFRF:(Stenman Sebastian)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Holmström, Oscar, et al. (författare)
  • A novel deep learning-based point-of-care diagnostic method for detecting Plasmodium falciparum with fluorescence digital microscopy.
  • 2020
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 15:11
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Malaria remains a major global health problem with a need for improved field-usable diagnostic tests. We have developed a portable, low-cost digital microscope scanner, capable of both brightfield and fluorescence imaging. Here, we used the instrument to digitize blood smears, and applied deep learning (DL) algorithms to detect Plasmodium falciparum parasites.METHODS: Thin blood smears (n = 125) were collected from patients with microscopy-confirmed P. falciparum infections in rural Tanzania, prior to and after initiation of artemisinin-based combination therapy. The samples were stained using the 4',6-diamidino-2-phenylindole fluorogen and digitized using the prototype microscope scanner. Two DL algorithms were trained to detect malaria parasites in the samples, and results compared to the visual assessment of both the digitized samples, and the Giemsa-stained thick smears.RESULTS: Detection of P. falciparum parasites in the digitized thin blood smears was possible both by visual assessment and by DL-based analysis with a strong correlation in results (r = 0.99, p < 0.01). A moderately strong correlation was observed between the DL-based thin smear analysis and the visual thick smear-analysis (r = 0.74, p < 0.01). Low levels of parasites were detected by DL-based analysis on day three following treatment initiation, but a small number of fluorescent signals were detected also in microscopy-negative samples.CONCLUSION: Quantification of P. falciparum parasites in DAPI-stained thin smears is feasible using DL-supported, point-of-care digital microscopy, with a high correlation to visual assessment of samples. Fluorescent signals from artefacts in samples with low infection levels represented the main challenge for the digital analysis, thus highlighting the importance of minimizing sample contaminations. The proposed method could support malaria diagnostics and monitoring of treatment response through automated quantification of parasitaemia and is likely to be applicable also for diagnostics of other Plasmodium species and other infectious diseases.
  •  
2.
  • Stenman, Sebastian, et al. (författare)
  • A deep learning-based algorithm for tall cell detection in papillary thyroid carcinoma
  • 2022
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 17:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction:According to the World Health Organization, the tall cell variant (TCV) is an aggressive subtype of papillary thyroid carcinoma (PTC) comprising at least 30% epithelial cells two to three times as tall as they are wide. In practice, applying this definition is difficult causing substantial interobserver variability. We aimed to train a deep learning algorithm to detect and quantify the proportion of tall cells (TCs) in PTC.Methods: We trained the deep learning algorithm using supervised learning, testing it on an independent dataset, and further validating it on an independent set of 90 PTC samples from patients treated at the Hospital District of Helsinki and Uusimaa between 2003 and 2013. We compared the algorithm-based TC percentage to the independent scoring by a human investigator and how those scorings associated with disease outcomes. Additionally, we assessed the TC score in 71 local and distant tumor relapse samples from patients with aggressive disease.Results: In the test set, the deep learning algorithm detected TCs with a sensitivity of 93.7% and a specificity of 94.5%, whereas the sensitivity fell to 90.9% and specificity to 94.1% for non-TC areas. In the validation set, the deep learning algorithm TC scores correlated with a diminished relapse-free survival using cutoff points of 10% (p = 0.044), 20% (p < 0.01), and 30% (p = 0.036). The visually assessed TC score did not statistically significantly predict survival at any of the analyzed cutoff points. We observed no statistically significant difference in the TC score between primary tumors and relapse tumors determined by the deep learning algorithm or visually.Conclusions: We present a novel deep learning-based algorithm to detect tall cells, showing that a high deep learning-based TC score represents a statistically significant predictor of less favorable relapse-free survival in PTC.
  •  
3.
  • Stenman, Sebastian, et al. (författare)
  • Antibody Supervised Training of a Deep Learning Based Algorithm for Leukocyte Segmentation in Papillary Thyroid Carcinoma
  • 2021
  • Ingår i: IEEE journal of biomedical and health informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 25:2, s. 422-428
  • Tidskriftsartikel (refereegranskat)abstract
    • The quantity of leukocytes in papillary thyroid carcinoma (PTC) potentially have prognostic and treatment predictive value. Here, we propose a novel method for training a convolutional neural network (CNN) algorithm for segmenting leukocytes in PTCs. Tissue samples from two retrospective PTC cohort were obtained and representative tissue slides from twelve patients were stained with hematoxylin and eosin (HE) and digitized. Then, the HE slides were destained and restained immunohistochemically (IHC) with antibodies to the pan-leukocyte anti CD45 antigen and scanned again. The two stain-pairs of all representative tissue slides were registered, and image tiles of regions of interests were exported. The image tiles were processed and the 3,3'-diaminobenzidine (DAB) stained areas representing anti CD45 expression were turned into binary masks. These binary masks were applied as annotations on the HE image tiles and used in the training of a CNN algorithm. Ten whole slide images (WSIs) were used for training using a five-fold cross-validation and the remaining two slides were used as an independent test set for the trained model. For visual evaluation, the algorithm was run on all twelve WSIs, and in total 238,144 tiles sized 500 x 500 pixels were analyzed. The trained CNN algorithm had an intersection over union of 0.82 for detection of leukocytes in the HE image tiles when comparing the prediction masks to the ground truth anti CD45 mask. We conclude that this method for generating antibody supervised annotations using the destain-restain IHC guided annotations resulted in high accuracy segmentations of leukocytes in HE tissue images.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy