SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stenoien Hans K.) "

Sökning: WFRF:(Stenoien Hans K.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Weston, David J., et al. (författare)
  • The Sphagnome Project : enabling ecological and evolutionary insights through a genus-level sequencing project
  • 2018
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 217:1, s. 16-25
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even 'extend' to influence community structure and ecosystem level processes. Progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Thus, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. Here we introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration, biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses.
  •  
2.
  • Bengtsson, Fia, 1986-, et al. (författare)
  • Environmental drivers of Sphagnum growth in peatlands across the Holarctic region
  • 2021
  • Ingår i: Journal of Ecology. - : John Wiley & Sons. - 0022-0477 .- 1365-2745. ; 109:1, s. 417-431
  • Tidskriftsartikel (refereegranskat)abstract
    • The relative importance of global versus local environmental factors for growth and thus carbon uptake of the bryophyte genusSphagnum-the main peat-former and ecosystem engineer in northern peatlands-remains unclear. We measured length growth and net primary production (NPP) of two abundantSphagnumspecies across 99 Holarctic peatlands. We tested the importance of previously proposed abiotic and biotic drivers for peatland carbon uptake (climate, N deposition, water table depth and vascular plant cover) on these two responses. Employing structural equation models (SEMs), we explored both indirect and direct effects of drivers onSphagnumgrowth. Variation in growth was large, but similar within and between peatlands. Length growth showed a stronger response to predictors than NPP. Moreover, the smaller and denserSphagnum fuscumgrowing on hummocks had weaker responses to climatic variation than the larger and looserSphagnum magellanicumgrowing in the wetter conditions. Growth decreased with increasing vascular plant cover within a site. Between sites, precipitation and temperature increased growth forS. magellanicum. The SEMs indicate that indirect effects are important. For example, vascular plant cover increased with a deeper water table, increased nitrogen deposition, precipitation and temperature. These factors also influencedSphagnumgrowth indirectly by affecting moss shoot density. Synthesis. Our results imply that in a warmer climate,S. magellanicumwill increase length growth as long as precipitation is not reduced, whileS. fuscumis more resistant to decreased precipitation, but also less able to take advantage of increased precipitation and temperature. Such species-specific sensitivity to climate may affect competitive outcomes in a changing environment, and potentially the future carbon sink function of peatlands.
  •  
3.
  • Falahati-Anbaran, Mohsen, et al. (författare)
  • Contrasting Patterns of Genetic Structuring in Natural Populations of Arabidopsis lyrata Subsp petraea across Different Regions in Northern Europe
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:9, s. e107479-
  • Tidskriftsartikel (refereegranskat)abstract
    • Level and partitioning of genetic diversity is expected to vary between contrasting habitats, reflecting differences in strength of ecological and evolutionary processes. Therefore, it is necessary to consider processes acting on different time scales when trying to explain diversity patterns in different parts of species' distributions. To explore how historical and contemporary factors jointly may influence patterns of genetic diversity and population differentiation, we compared genetic composition in the perennial herb Arabidopsis lyrata ssp. petraea from the northernmost parts of its distribution range on Iceland to that previously documented in Scandinavia. Leaf tissue and soil were sampled from ten Icelandic populations of A. lyrata. Seedlings were grown from soil samples, and tissue from above-ground and seed bank individuals were genotyped with 21 microsatellite markers. Seed bank density in Icelandic populations was low but not significantly different from that observed in Norwegian populations. While within-population genetic diversity was relatively high on Iceland (H-E = 0.35), among-population differentiation was low (F-ST = 0.10) compared to Norwegian and Swedish populations. Population differentiation was positively associated with geographical distance in both Iceland and Scandinavia, but the strength of this relationship varied between regions. Although topography and a larger distribution range may explain the higher differentiation between mountainous Norwegian relative to lowland populations in Sweden, these factors cannot explain the lower differentiation in Icelandic compared to Swedish populations. We propose that low genetic differentiation among Icelandic populations is not caused by differences in connectivity, but is rather due to large historical effective population sizes. Thus, rather than contemporary processes, historical factors such as survival of Icelandic lineages in northern refugia during the last glacial period may have contributed to the observed pattern.
  •  
4.
  • Falahati-Anbaran, Mohsen, et al. (författare)
  • Genetic consequences of seed banks in the perennial herb Arabidopsis lyrata subsp. petraea (Brassicaceae)
  • 2011
  • Ingår i: American Journal of Botany. - : Wiley. - 0002-9122 .- 1537-2197. ; 98:9, s. 1475-1485
  • Tidskriftsartikel (refereegranskat)abstract
    • Premise of the Study: Seed banks may increase the effective population size (N(e)) of plants as a result of elevated coalescence times for alleles residing in the populations. This has been empirically demonstrated in populations of the annual Arabidopsis thaliana, whereas comparable data for perennial species are currently lacking. We studied the contribution of seed banks to effective sizes of natural populations of the self-incompatible, perennial Arabidopsis lyrata subsp. petraea, a close relative of A. thaliana. Methods: Fourteen populations of A. lyrata collected throughout the Norwegian distribution range were analyzed using micro-satellite markers. Key Results: The genetic composition of seed-bank and aboveground cohorts was found to be highly similar, with little genetic differentiation between cohorts in most populations. However, the proportion of private alleles was higher in aboveground than in seed-bank cohorts. The presence of seed banks significantly increased total N(e), but the contribution from seed banks to overall N(e) were lower than the contribution from aboveground cohorts in most populations. Estimated historical N(e) values, reflecting the effective sizes of populations throughout the history of the species, were considerably higher than estimates of contemporary N(e), reflecting number of reproducing individuals within the past few generations. Conclusions: The results show that the seed bank contributes to total N(e) in the perennial herb A. lyrata. However, the contribution is similar to or lower than that of the above-ground fraction of the population and markedly weaker than that previously documented in the annual A. thaliana.
  •  
5.
  • Falahati-Anbaran, Mohsen, et al. (författare)
  • Seed dispersal in time can counteract the effect of gene flow between natural populations of Arabidopsis thaliana
  • 2014
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 202:3, s. 1043-1054
  • Tidskriftsartikel (refereegranskat)abstract
    • Plants may escape unfavorable environments by dispersing to new sites, or by remaining in an ungerminated state at a given site until environmental conditions become favorable. There is limited evidence regarding the occurrence, interplay and relative importance of dispersal processes in time and space in plant populations. Thirty-six natural populations of the annual ruderal species Arabidopsis thaliana were monitored over five consecutive years, sampling both seed bank and above-ground cohorts. We show that immigration rates are considerably higher than previously inferred, averaging 1.7% per populationyr(-1). On the other hand, almost one-third of the individuals in a given above-ground cohort result from seeds shed 2 or 3yr back in time in 10 of the studied populations. Populations that disappeared one year were recolonized by regeneration from the seed bank the subsequent year. Thus, dispersal in both time and space is an important contributor to the structuring of genetic variability in natural populations of A.thaliana, where a high dispersal rate in time may partly counteract the homogenizing effects of spatial seed and pollen dispersal.
  •  
6.
  • Granath, Gustaf, et al. (författare)
  • Evolution of niche preference in Sphagnum peat mosses
  • 2015
  • Ingår i: Evolution. - : Wiley. - 0014-3820 .- 1558-5646. ; 69:1, s. 90-103
  • Tidskriftsartikel (refereegranskat)abstract
    • Peat mosses (Sphagnum) are ecosystem engineersspecies in boreal peatlands simultaneously create and inhabit narrow habitat preferences along two microhabitat gradients: an ionic gradient and a hydrological hummock-hollow gradient. In this article, we demonstrate the connections between microhabitat preference and phylogeny in Sphagnum. Using a dataset of 39 species of Sphagnum, with an 18-locus DNA alignment and an ecological dataset encompassing three large published studies, we tested for phylogenetic signal and within-genus changes in evolutionary rate of eight niche descriptors and two multivariate niche gradients. We find little to no evidence for phylogenetic signal in most component descriptors of the ionic gradient, but interspecific variation along the hummock-hollow gradient shows considerable phylogenetic signal. We find support for a change in the rate of niche evolution within the genusthe hummock-forming subgenus Acutifolia has evolved along the multivariate hummock-hollow gradient faster than the hollow-inhabiting subgenus Cuspidata. Because peat mosses themselves create some of the ecological gradients constituting their own habitats, the classic microtopography of Sphagnum-dominated peatlands is maintained by evolutionary constraints and the biological properties of related Sphagnum species. The patterns of phylogenetic signal observed here will instruct future study on the role of functional traits in peatland growth and reconstruction.
  •  
7.
  • Stenoien, Hans K., et al. (författare)
  • North american origin and recent European establishments of the amphi-atlantic peat moss sphagnum angermanicum
  • 2011
  • Ingår i: Evolution. - : Wiley. - 0014-3820 .- 1558-5646. ; 65:4, s. 1181-1194
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic and morphological similarity between populations separated by large distances may be caused by frequent long-distance dispersal or retained ancestral polymorphism. The frequent lack of differentiation between disjunct conspecific moss populations on different continents has traditionally been explained by the latter model, and has been cited as evidence that many or most moss species are extremely ancient and slowly diverging. We have studied intercontinental differentiation in the amphi-Atlantic peat moss Sphagnum angermanicum using 23 microsatellite markers. Two major genetic clusters are found, both of which occur throughout the distributional range. Patterns of genetic structuring and overall migration patterns suggest that the species probably originated in North America, and seems to have been established twice in Northern Europe during the past 40,000 years. We conclude that similarity between S. angermanicum populations on different continents is not the result of ancient vicariance and subsequent stasis. Rather, the observed pattern can be explained by multiple long-distance dispersal over limited evolutionary time. The genetic similarity can also partly be explained by incomplete lineage sorting, but this appears to be caused by the short time since separation. Our study adds to a growing body of evidence suggesting that Sphagnum, constituting a significant part of northern hemisphere biodiversity, may be more evolutionary dynamic than previously assumed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy