SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stenzel Martina H.) "

Sökning: WFRF:(Stenzel Martina H.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cao, Cheng, et al. (författare)
  • Drug-Directed Morphology Changes in Polymerization-Induced Self-Assembly (PISA) Influence the Biological Behavior of Nanoparticles
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 12:27, s. 30221-30233
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of the hydrophobic block length on the morphologies of polymerization-induced self-assembled (PISA) nanoparticles is well understood. However, the influence of drug loading on the phase morphology of the nanoparticles during the PISA process, and the resulting biological function of PISA nanoparticles, has barely been investigated. In this work, we show that the addition of a drug, curcumin, during the PISA process shifts the phase diagram toward different morphologies. The PISA system was based on hydrophilic poly(2-(methacryloyloxy)ethylphosphorylcholine) (PMPC), which was chain extended with hydrophobic methyl methacrylate (MMA) in various concentrations of curcumin. According to transmission electron microscopy, the presence of curcumin led to the transition of, for example, worms to polymersome and micelles to worms analysis. To understand the interaction between polymer particles and drug, small-angle X-ray scattering (SAXS), small-angle neutron scattering (SANS), and fluorescence lifetime measurements were carried out. These measurements show that curcumin is predominantly located in the core in the case of micelles and worms while it is found in the shell of polymersomes. The change in morphology influences the cellular uptake by MCF-7 cells and the movement of the particles in multicellular cancer spheroids (3D model). With the increasing amount of drug, the cellular uptake of micelles and worms was enhanced with the increasing grafting density of MPC chains, which contrasts the decreasing cellular uptake in the higher drug-loaded polymersomes due to the lower shell hydration.
  •  
2.
  • Cao, Cheng, et al. (författare)
  • The Protein Corona Leads to Deformation of Spherical Micelles
  • 2021
  • Ingår i: Angewandte Chemie International Edition. - : John Wiley & Sons. - 1433-7851 .- 1521-3773. ; 60:18, s. 10342-10349
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of a non-specific protein corona around nanoparticles (NPs) has been identified as one of the culprits for failed nanomedicine. The amount and type of adsorbed protein from the blood plasma are known to determine the fate of NPs and the accessibility of targeting ligands. Herein, we show that the adsorbed protein may not only enlarge the NPs and change their surface properties but also, in the case of soft NPs such as polymer micelles, lead to deformation. Poly(1-O-methacryloyl -beta-D-fructopyranose)-b-poly(methylmethacrylate) (P(1-O-MAFru)-b-PMMA) block co-polymers were self-assembled into NPs with a spherical core-shell morphology as determined by small angle neutron scattering (SANS). Upon incubation with albumin, TEM, SANS, and small angle X-ray scattering (SAXS) revealed the adsorption of albumin and deformation of the NPs with a spheroid geometry. Removal of the protein led to the reversal of the morphology back to the spherical core-shell structure. Structural studies and cell studies of uptake of the NPs imply that the observed deformation may influence blood circulation time and cell uptake.
  •  
3.
  • Lovegrove, Jordan T., et al. (författare)
  • Assembly of Multicompartment Glycopolymer Worms in Aqueous Solution
  • 2023
  • Ingår i: Macromolecules. - 0024-9297. ; 56:8, s. 3195-3203
  • Tidskriftsartikel (refereegranskat)abstract
    • Hierarchical self-assembly is a versatile technique that allows the formation of many complex architectures on the nano- and microscale. However, many of these structures are formed in harsh organic solvents with nonbiocompatible polymers. Here, we investigate in more detail a synthetic path to produce biologically compatible, crosslinked, multicompartment worms (MCWs) in aqueous solution by incorporating thermoresponsive poly-N-isopropylacrylamide (PNIPAM) to direct assembly above the lower critical solution temperature (LCST). As the self-assembly into MCWs can be controlled externally by adjusting the temperature, we can provide new insight into the mechanism of hierarchical self-assembly. The growth of MCWs starting from primary micelles was observed above the LCST using in situ small-angle neutron scattering, dynamic light scattering, atomic force microscopy, and phase contrast microscopy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy