SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stephan Klaas Enno) "

Sökning: WFRF:(Stephan Klaas Enno)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Deserno, Lorenz, et al. (författare)
  • Volatility Estimates Increase Choice Switching and Relate to Prefrontal Activity in Schizophrenia
  • 2020
  • Ingår i: Biological Psychiatry. - : ELSEVIER. - 2451-9022. ; 5:2, s. 173-183
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Reward-based decision making is impaired in patients with schizophrenia (PSZ), as reflected by increased choice switching. The underlying cognitive and motivational processes as well as associated neural signatures remain unknown. Reinforcement learning and hierarchical Bayesian learning account for choice switching in different ways. We hypothesized that enhanced choice switching, as seen in PSZ during reward-based decision making, relates to higher-order beliefs about environmental volatility, and we examined the associated neural activity. METHODS: In total, 46 medicated PSZ and 43 healthy control subjects performed a reward-based decision-making task requiring flexible responses to changing action-outcome contingencies during functional magnetic resonance imaging. Detailed computational modeling of choice data was performed, including reinforcement learning and the hierarchical Gaussian filter. Trajectories of learning from computational modeling informed the analysis of functional magnetic resonance imaging data. RESULTS: A 3-level hierarchical Gaussian filter accounted best for the observed choice data. This model revealed a heightened initial belief about environmental volatility and a stronger influence of volatility on lower-level learning of action-outcome contingencies in PSZ as compared with healthy control subjects. This was replicated in an independent sample of nonmedicated PSZ. Beliefs about environmental volatility were reflected by higher activity in dorsolateral prefrontal cortex of PSZ as compared with healthy control subjects. CONCLUSIONS: Our study suggests that PSZ inferred the environment as overly volatile, which may explain increased choice switching. In PSZ, activity in dorsolateral prefrontal cortex was more strongly related to beliefs about environmental volatility. Our computational phenotyping approach may provide useful information to dissect clinical heterogeneity and could improve prediction of outcome.
  •  
2.
  •  
3.
  • Tegner, Jesper N, et al. (författare)
  • Computational disease modeling - fact or fiction?
  • 2009
  • Ingår i: BMC Systems Biology. - : Springer Science and Business Media LLC. - 1752-0509. ; 3:56
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Biomedical research is changing due to the rapid accumulation of experimental data at an unprecedented scale, revealing increasing degrees of complexity of biological processes. Life Sciences are facing a transition from a descriptive to a mechanistic approach that reveals principles of cells, cellular networks, organs, and their interactions across several spatial and temporal scales. There are two conceptual traditions in biological computational-modeling. The bottom-up approach emphasizes complex intracellular molecular models and is well represented within the systems biology community. On the other hand, the physics-inspired top-down modeling strategy identifies and selects features of (presumably) essential relevance to the phenomena of interest and combines available data in models of modest complexity. Results: The workshop, "ESF Exploratory Workshop on Computational disease Modeling", examined the challenges that computational modeling faces in contributing to the understanding and treatment of complex multi-factorial diseases. Participants at the meeting agreed on two general conclusions. First, we identified the critical importance of developing analytical tools for dealing with model and parameter uncertainty. Second, the development of predictive hierarchical models spanning several scales beyond intracellular molecular networks was identified as a major objective. This contrasts with the current focus within the systems biology community on complex molecular modeling. Conclusion: During the workshop it became obvious that diverse scientific modeling cultures (from computational neuroscience, theory, data-driven machine-learning approaches, agent-based modeling, network modeling and stochastic-molecular simulations) would benefit from intense cross-talk on shared theoretical issues in order to make progress on clinically relevant problems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy