SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stevensson Baltzar 1975 ) "

Sökning: WFRF:(Stevensson Baltzar 1975 )

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kapla, Jon, et al. (författare)
  • Molecular Dynamics Simulations of Membranes Composed of Glycolipids and Phospholipids
  • 2012
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 116:1, s. 244-252
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipid membranes composed of 1,2-di-(9Z,12Z,15Z)-octade-catrienoyl-3-O-β-D-galactosyl-sn-glycerol or monogalactosyldiacylglycerol(MGDG) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) were studied by means of molecular dynamics (MD) computer simulations. Three lipid compositions were considered: 0%, 20%, and 45% MGDG (by mole) denoted as MG-0, MG-20, and MG-45, respectively. The article is focused on the calculation of NMR dipolar interactions, which were confronted with previously reported experimental couplings. Dynamical processes and orientational distributions relevant for the averaging of dipolar interactions were evaluated. Furthermore, several parameters important for characterization of the bilayer structure, molecular organization, and dynamics were investigated. In general, only a minor change in DMPC properties was observed upon the increased MGDG/DMPC ratio, whereas properties related to MGDG undergo a more pronounced change. This effect was ascribed to the fact that DMPC is a bilayer (Lα) forming lipid, whereas MGDG prefers a reverse hexagonal (HII) arrangement.
  •  
2.
  • Karlsson, Stefan, 1984-, et al. (författare)
  • Mechanical, thermal, and structural investigations of chemically strengthened Na2O-CaO-Al2O3-SiO2 glasses
  • 2022
  • Ingår i: Frontiers in Materials. - : Frontiers Media S.A.. - 2296-8016. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • For a series of conventional soda-lime-silicate glasses with increasing Al2O3 content, we investigated the thermal, mechanical, and structural properties before and after K+-for-Na+ ion-exchange strengthening by exposure to molten KNO3. The Al-for-Si replacement resulted in increased glass network polymerization and lowered compactness. The glass transition temperature (T (g)), hardness (H) and reduced elastic modulus (E (r)), of the pristine glasses enhanced monotonically for increasing Al2O3 content. H and E (r) increased linearly up to a glass composition with roughly equal stoichiometric amounts of Na2O and Al2O3 where a nonlinear dependence on Al2O3 was observed, whereas H and E (r) of the chemically strengthened (CS) glasses revealed a strictly linear dependence. T (g), on the other hand, showed linear increase with Al-for-Si for pristine glasses while for the CS glasses a linear to nonlinear trend was observed. Solid-state Al-27 nuclear magnetic resonance (NMR) revealed the sole presence of AlO4 groups in both the pristine and CS glasses. Na-23 NMR and wet-chemical analysis manifested that all Al-bearing glasses had a lower and near-constant K+-for-Na+ ion exchange ratio than the soda-lime-silicate glass. Differential thermal analysis of CS glasses revealed a "blurred " glass transition temperature (T (g)) and an exothermic step below T (g); the latter stems from the relaxation of residual compressive stresses. The nanoindentation-derived hardness at low loads and n(M O-(2))/n(Al2O3) & AP; 1 for the CS glasses, which is attributed to an increased elastic energy recovery that is linked to the glass compactness.
  •  
3.
  • Lv, Peng, et al. (författare)
  • BO3/BO4 Intermixing in Borosilicate Glass Networks Probed by Double-Quantum 11B NMR : What Factors Govern BO4-BO4 Formation?
  • 2023
  • Ingår i: The Journal of Physical Chemistry C. - 1932-7447 .- 1932-7455. ; 127:40, s. 20026-20040
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine the borate group intermixing in a series of 25 borosilicate (BS) glasses from the [0.5M(2)O–0.5Na2O]–B2O3–SiO2 systems with M = {Li, K, Rb, Mg, Ca} along with ternary K2O–B2O3–SiO2 and Na2O–B2O3–SiO2 glasses by double-quantum–single-quantum (2Q–1Q) 11B correlation nuclear magnetic resonance (NMR) experiments. The alterations of the fractional populations of B[3]–O–B[3], B[3]–O–B[4], and B[4]–O–B[4] linkages in the glass networks were monitored for variable nSi/nB molar ratios, nonbridging O contents of the glass, and the (average) cation field strength (CFS) of the Mz+/Na+ network modifiers. A significant B[4]–O–B[4] bonding is observed in all glasses, thereby conclusively demonstrating that the normally assumed “BO4–BO4 avoidance” is far from strict in BS glasses, regardless of the Mz+ field strength. We show that the degree of B[4]–O–B[4] bonding depends foremost on its underlying BO4 population and to a lesser degree on the NBO content of the glass; we also provide a straightforward prediction of the B[4]–O–B[4] population in an arbitrary BS glass from parameters readily obtained by routine 11B NMR. The propensity for forming B[4]–O–B[4] linkages increases concurrently with either the CFS or the amount of glass network modifiers, roughly scaling as the square root of the “effective CFS” that encompasses both parameters. Although BO3–BO3 and BO3–BO4 pairs remain favored throughout all examined BS glass networks, the borate group intermixing randomizes significantly for increasing effective CFS, out of which the amount and charge of the glass-network modifier cations dominate over their size. Our results are discussed in relation to the two prevailing but formally mutually exclusive “random network” and “superstructural unit” models of borate and BS glasses.
  •  
4.
  • Lv, Zhong-Peng, et al. (författare)
  • Impact of the cation field strength on physical properties and structures of alkali and alkaline-earth borosilicate glasses
  • 2022
  • Ingår i: Ceramics International. - : Elsevier BV. - 0272-8842 .- 1873-3956. ; 48:13, s. 18094-18107
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of the cation field strength (CFS) of the glass network-modifier cations on the structure and properties of borosilicate glasses (BS) were examined for a large ensemble of mixed-cation (R/2)M(2)O–(R/2)Na2O–B2O3–KSiO2 glasses with M+ ={Li+, Na+, K+, Rb+} and M2+ ={Mg2+, Ca2+, Sr2+, Ba2+} from four series of {K, R} combinations of K = n(SiO2)/n(B2O3) = {2.0, 4.0} and R =[n(M(2)O) ​+ ​n(Na2O)]/n(B2O3) = {0.75, 2.1}. Combined with results from La3+ bearing glasses enabled the probing of physical-property variations across a wide CFS range, encompassing the glass transition temperature (Tg), density, molar volume and compactness, as well as the hardness (H) and Young's modulus (E). We discuss the inferred composition–structure/CFS–property relationships. Each of Tg, H, and E revealed a non-linear dependence against the CFS and a strong Tg/H correlation, where each property is maximized for the largest alkaline-earth metal cations, i.e., Sr2+ and Ba2+, along with the high-CFS La3+ species. The 11B MAS NMR-derived fractional BO4 populations decreased linearly with the average Mz+/Na+ CFS within both K–0.75 glass branches, whereas the NBO-rich K–2.1 glasses manifested more complex trends. Comparisons with results from RM2O–B2O3–KSiO2 glasses suggested no significant “mixed alkali effect”.
  •  
5.
  • Majhi, Debashis, et al. (författare)
  • 1H and 13C chemical shift-structure effects in anhydrous β-caffeine and four caffeine-diacid cocrystals probed by solid-state NMR experiments and DFT calculations
  • 2024
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - 1463-9076 .- 1463-9084.
  • Tidskriftsartikel (refereegranskat)abstract
    • By using density functional theory (DFT) calculations, we refined the H atom positions in the structures of β-caffeine (C), α-oxalic acid (OA; (COOH)2), α-(COOH)2·2H2O, β-malonic acid (MA), β-glutaric acid (GA), and I-maleic acid (ME), along with their corresponding cocrystals of 2 : 1 (2C–OA, 2C–MA) or 1 : 1 (C–GA, C–ME) stoichiometry. The corresponding 13C/1H chemical shifts obtained by gauge including projector augmented wave (GIPAW) calculations agreed overall very well with results from magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy experiments. Chemical-shift/structure trends of the precursors and cocrystals were examined, where good linear correlations resulted for all COO1H sites against the H⋯O and/or H⋯N H-bond distance, whereas a general correlation was neither found for the aliphatic/caffeine-stemming 1H sites nor any 13C chemical shift against either the intermolecular hydrogen- or tetrel-bond distance, except for the 13COOH sites of the 2C–OA, 2C–MA, and C–GA cocrystals, which are involved in a strong COOH⋯N bond with caffeine that is responsible for the main supramolecular stabilization of the cocrystal. We provide the first complete 13C NMR spectral assignment of the structurally disordered anhydrous β-caffeine polymorph. The results are discussed in relation to previous literature on the disordered α-caffeine polymorph and the ordered hydrated counterpart, along with recommendations for NMR experimentation that will secure sufficient 13C signal-resolution for reliable resonance/site assignments.
  •  
6.
  • Mathew, Renny, 1982-, et al. (författare)
  • Nuclear Magnetic Resonance and Metadynamics Simulations Reveal the Atomistic Binding of ʟ-Serine and O-Phospho-ʟ-Serine at Disordered Calcium Phosphate Surfaces of Biocements
  • 2022
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 34:19, s. 8815-8830
  • Tidskriftsartikel (refereegranskat)abstract
    • Interactions between biomolecules and structurally disordered calcium phosphate (CaP) surfaces are crucial for the regulation of bone mineralization by noncollagenous proteins, the organization of complexes of casein and amorphous calcium phosphate (ACP) in milk, as well as for structure–function relationships of hybrid organic/inorganic interfaces in biomaterials. By a combination of advanced solid-state NMR experiments and metadynamics simulations, we examine the detailed binding of O-phospho-l-serine (Pser) and l-serine (Ser) with ACP in bone-adhesive CaP cements, whose capacity of gluing fractured bone together stems from the close integration of the organic molecules with ACP over a subnanometer scale. The proximity of each carboxy, aliphatic, and amino group of Pser/Ser to the Ca2+ and phosphate species of ACP observed from the metadynamics-derived models agreed well with results from heteronuclear solid-state NMR experiments that are sensitive to the 13C–31P and 15N–31P distances. The inorganic/organic contacts in Pser-doped cements are also contrasted with experimental and modeled data on the Pser binding at nanocrystalline HA particles grown from a Pser-bearing aqueous solution. The molecular adsorption is driven mainly by electrostatic interactions between the negatively charged carboxy/phosphate groups and Ca2+ cations of ACP, along with H bonds to either protonated or nonprotonated inorganic phosphate groups. The Pser and Ser molecules anchor at their phosphate/amino and carboxy/amino moieties, respectively, leading to an extended molecular conformation across the surface, as opposed to an “upright standing” molecule that would result from the binding of one sole functional group.
  •  
7.
  •  
8.
  • Stevensson, Baltzar, 1975-, et al. (författare)
  • Improved reweighting protocols for variationally enhanced sampling simulations with multiple walkers
  • 2023
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - 1463-9076 .- 1463-9084. ; 25:33, s. 22063-22078
  • Tidskriftsartikel (refereegranskat)abstract
    • In molecular dynamics simulations utilizing enhanced-sampling techniques, reweighting is a central component for recovering the targeted ensemble averages of the unbiased system by calculating and applying a bias-correction function c(t). We present enhanced reweighting protocols for variationally enhanced sampling (VES) simulations by exploiting a recent reweighting method, originally introduced in the metadynamics framework [Giberti et al. J. Chem. Theory Comput., 2020, 16, 100-107], which was modified and extended to multiple-walker simulations: these may be implemented either as independent walkers (associated with one unique correction function per walker) or cooperative ones that all share one correction function, which is the hitherto only explored option. When each case is combined with the two possibilities of determining c(t) by time integration up to either t or over the entire simulation period , altogether four reweighting options result. Their relative merits were assessed by well-tempered VES simulations of two model problems: locating the free-energy difference between two metastable molecular conformations of the N-acetyl-l-alanine methylamide dipeptide, and the recovery of an a priori known distribution when one water molecule in the liquid phase is perturbed by a periodic free-energy function. The most rapid convergence occurred for large cooperative walkers, regardless of the upper integration limit, but integrating up to t proved advantageous for small walker ensembles. That novel reweighting method compared favorably to the standard VES reweighting, as well as to current state-of-the-art reweighting options introduced for metadynamics simulations that estimate c(t) by integration over the collective variables. For further gains in computational speed and accuracy, we also introduce analytical solutions for c(t), as well as offering further insight into its features by approximative analytical expressions in the high-temperature regime.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy