SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stips Adolf) "

Sökning: WFRF:(Stips Adolf)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Friedland, René, et al. (författare)
  • Effects of Nutrient Management Scenarios on Marine Eutrophication Indicators : A Pan-European, Multi-Model Assessment in Support of the Marine Strategy Framework Directive
  • 2021
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel pan-European marine model ensemble was established, covering nearly all seas under the regulation of the Marine Strategy Framework Directive (MSFD), with the aim of providing a consistent assessment of the potential impacts of riverine nutrient reduction scenarios on marine eutrophication indicators. For each sea region, up to five coupled biogeochemical models from institutes all over Europe were brought together for the first time. All model systems followed a harmonised scenario approach and ran two simulations, which varied only in the riverine nutrient inputs. The load reductions were evaluated with the catchment model GREEN and represented the impacts due to improved management of agriculture and wastewater treatment in all European river systems. The model ensemble, comprising 15 members, was used to assess changes to the core eutrophication indicators as defined within MSFD Descriptor 5. In nearly all marine regions, riverine load reductions led to reduced nutrient concentrations in the marine environment. However, regionally the nutrient input reductions led to an increase in the non-limiting nutrient in the water, especially in the case of phosphate concentrations in the Black Sea. Further core eutrophication indicators, such as chlorophyll-a, bottom oxygen and the Trophic Index TRIX, improved nearly everywhere, but the changes were less pronounced than for the inorganic nutrients. The model ensemble displayed strong consistency and robustness, as most if not all models indicated improvements in the same areas. There were substantial differences between the individual seas in the speed of response to the reduced nutrient loads. In the North Sea ensemble, a stable plateau was reached after only three years, while the simulation period of eight years was too short to obtain steady model results in the Baltic Sea. The ensemble exercise confirmed the importance of improved management of agriculture and wastewater treatments in the river catchments to reduce marine eutrophication. Several shortcomings were identified, the outcome of different approaches to compute the mean change was estimated and potential improvements are discussed to enhance policy support. Applying a model ensemble enabled us to obtain highly robust and consistent model results, substantially decreasing uncertainties in the scenario outcome. ABSTRACT A novel pan-European marine model ensemble was established, covering nearly all seas under the regulation of the Marine Strategy Framework Directive (MSFD), with the aim of providing a consistent assessment of the potential impacts of riverine nutrient reduction scenarios on marine eutrophication indicators. For each sea region, up to five coupled biogeochemical models from institutes all over Europe were brought together for the first time. All model systems followed a harmonised scenario approach and ran two simulations, which varied only in the riverine nutrient inputs. The load reductions were evaluated with the catchment model GREEN and represented the impacts due to improved management of agriculture and wastewater treatment in all European river
  •  
2.
  • Piroddi, Chiara, et al. (författare)
  • Effects of Nutrient Management Scenarios on Marine Food Webs : A Pan-European Assessment in Support of the Marine Strategy Framework Directive
  • 2021
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Eutrophication is one of the most important anthropogenic pressures impacting coastal seas. In Europe, several legislations and management measures have been implemented to halt nutrient overloading in marine ecosystems. This study evaluates the impact of freshwater nutrient control measures on higher trophic levels (HTL) in European marine ecosystems following descriptors and criteria as defined by the Marine Strategy Framework Directive (MSFD). We used a novel pan-European marine modeling ensemble of fourteen HTL models, covering almost all the EU seas, under two nutrient management scenarios. Results from our projections suggest that the proposed nutrient reduction measures may not have a significant impact on the structure and function of European marine ecosystems. Among the assessed criteria, the spawning stock biomass of commercially important fish stocks and the biomass of small pelagic fishes would be the most impacted, albeit with values lower than 2.5%. For the other criteria/indicators, such as species diversity and trophic level indicators, the impact was lower. The Black Sea and the North-East Atlantic were the most negatively impacted regions, while the Baltic Sea was the only region showing signs of improvement. Coastal and shelf areas were more sensitive to environmental changes than large regional and sub-regional ecosystems that also include open seas. This is the first pan-European multi-model comparison study used to assess the impacts of land-based measures on marine and coastal European ecosystems through a set of selected ecological indicators. Since anthropogenic pressures are expanding apace in the marine environment and policy makers need to use rapid and effective policy measures for fast-changing environments, this modeling framework is an essential asset in supporting and guiding EU policy needs and decisions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy