SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stocker Hugo) "

Sökning: WFRF:(Stocker Hugo)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Harrison, Sandy P., et al. (författare)
  • Eco-evolutionary optimality as a means to improve vegetation and land-surface models
  • 2021
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 231:6, s. 2125-2141
  • Forskningsöversikt (refereegranskat)abstract
    • Global vegetation and land-surface models embody interdisciplinary scientific understanding of the behaviour of plants and ecosystems, and are indispensable to project the impacts of environmental change on vegetation and the interactions between vegetation and climate. However, systematic errors and persistently large differences among carbon and water cycle projections by different models highlight the limitations of current process formulations. In this review, focusing on core plant functions in the terrestrial carbon and water cycles, we show how unifying hypotheses derived from eco-evolutionary optimality (EEO) principles can provide novel, parameter-sparse representations of plant and vegetation processes. We present case studies that demonstrate how EEO generates parsimonious representations of core, leaf-level processes that are individually testable and supported by evidence. EEO approaches to photosynthesis and primary production, dark respiration and stomatal behaviour are ripe for implementation in global models. EEO approaches to other important traits, including the leaf economics spectrum and applications of EEO at the community level are active research areas. Independently tested modules emerging from EEO studies could profitably be integrated into modelling frameworks that account for the multiple time scales on which plants and plant communities adjust to environmental change.
  •  
2.
  • Krautz, Robert, 1986- (författare)
  • Drosophila immune responses in a model for epithelial hypertrophy
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Apoptosis, differentiation and proliferation have to be tightly balanced and thus regulated to maintain tissue homeostasis. Stress, metabolic cues, genetic variability, infections and physiological host-commensal interactions influence this balance and thus need to be integrated. Therefore, beyond the discrimination between self and non-self (i.e., foreign) also damage inflicted on tissues under sterile conditions is perceived by the immune system due to altered tissue integrity. Growing knowledge of the interaction between the immune system and wounded or more generally altered tissues allows inferring on anti-tumorous immune responses, too. Despite the lack of adaptive immunity, Drosophila mounts solid and versatile innate immune responses that functionally and molecularly share many properties with their vertebrate counterparts. In fact, tissue overgrowth, tissue dysplasia or endogenous danger signaling activate systemic Toll-signaling in the fat body indicating a role for the Drosophila immune system in maintaining tissue homeostasis.Here we characterize systemic and local immune responses towards altered or transformed tissues by using a Drosophila hypertrophy model, which is based on the overexpression of a dominant-active variant of the small GTPase Ras (Ras85DG12V) in salivary glands and wing discs. We characterized the strong induction of hemocyte recruitment to the glands as a consequence of JNK-dependent MMP1-expression and basal membrane degradation. Apart from this cellular immune reaction, transcriptome profiling revealed comprehensive humoral immune responses mounted by the fat body that involved signatures of Toll- and imd-activation. Moreover, a novel tissue-autonomous response that was spatially restricted to the anterior end of the RasV12-expressing salivary gland itself was identified. While multiple immune genes were found to be upregulated in the anterior compartment as detected by RNA sequencing, particular focus was given to the effector peptide Drosomycin (Drs). Overexpression of Drs with RasV12 in the entire gland similar to the inhibition of the JNK-pathway was able to selectively rescue a characteristic set of RasV12-induced phenotypes, which ultimately blocks the recruitment of hemocytes. Thereby, local immune-related responses in RasV12-expressing salivary glands are able to restrict the tissue damage induced by hypertrophic growth.
  •  
3.
  • Ryder, Edward, et al. (författare)
  • The DrosDel collection : a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster.
  • 2004
  • Ingår i: Genetics. - 0016-6731. ; 167:2, s. 797-813
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a collection of P-element insertions that have considerable utility for generating custom chromosomal aberrations in Drosophila melanogaster. We have mobilized a pair of engineered P elements, p[RS3] and p[RS5], to collect 3243 lines unambiguously mapped to the Drosophila genome sequence. The collection contains, on average, an element every 35 kb. We demonstrate the utility of the collection for generating custom chromosomal deletions that have their end points mapped, with base-pair resolution, to the genome sequence. The collection was generated in an isogenic strain, thus affording a uniform background for screens where sensitivity to genetic background is high. The entire collection, along with a computational and genetic toolbox for designing and generating custom deletions, is publicly available. Using the collection it is theoretically possible to generate >12,000 deletions between 1 bp and 1 Mb in size by simple eye color selection. In addition, a further 37,000 deletions, selectable by molecular screening, may be generated. We are now using the collection to generate a second-generation deficiency kit that is precisely mapped to the genome sequence.
  •  
4.
  • Ryder, Edward, et al. (författare)
  • The DrosDel deletion collection : A Drosophila genomewide chromosomal deficiency resource
  • 2007
  • Ingår i: Genetics. - Austin, Tex. : Genetics Society of America. - 0016-6731 .- 1943-2631. ; 177:1, s. 615-629
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a second-generation deficiency kit for Drosophila melanogaster composed of molecularly mapped deletions on an isogenic background, covering 77% of the Release 5.1 genome. Using a previously reported collection of FRT-bearing P-element insertions, we have generated 655 new deletions and verified a set of 209 deletion-bearing fly stocks. In addition to deletions, we demonstrate how the P elements may also be used to generate a set of custom inversions and duplications, particularly useful for balancing difficult regions of the genome carrying haplo-insufficient loci. We describe a simple computational resource that facilitatesselection of appropriate elements for generating custom deletions. Finally, we provide a computational resource that facilitates selection of other mapped FRT-bearing elements that, when combined with the DrosDel collection, can theoretically generate over half a million precisely mapped deletions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy