SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stockmeier Craig) "

Sökning: WFRF:(Stockmeier Craig)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Just, David, et al. (författare)
  • Exploring autoantibody signatures in brain tissue from patients with severe mental illness
  • 2020
  • Ingår i: Translational Psychiatry. - : Springer Nature. - 2158-3188. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, studies have shown higher prevalence of autoantibodies in patients with schizophrenia compared to healthy individuals. This study applies an untargeted and a targeted affinity proteomics approach to explore and characterize the autoantibody repertoire in brain tissues from 73 subjects diagnosed with schizophrenia and 52 control subjects with no psychiatric or neurological disorders. Selected brain tissue lysates were first explored for IgG reactivity on planar microarrays composed of 11,520 protein fragments representing 10,820 unique proteins. Based on these results of ours and other previous studies of autoantibodies related to psychosis, we selected 226 fragments with an average length of 80 amino acids, representing 127 unique proteins. Tissue-based analysis of IgG reactivities using antigen suspension bead arrays was performed in a multiplex and parallel fashion for all 125 subjects. Among the detected autoantigens, higher IgG reactivity in subjects with schizophrenia, as compared to psychiatrically healthy subjects, was found against the glutamate ionotropic receptor NMDA type subunit 2D (anti-GluN2D). In a separate cohort with serum samples from 395 young adults with a wider spectrum of psychiatric disorders, higher levels of serum autoantibodies targeting GluN2D were found when compared to 102 control individuals. By further validating GluN2D and additional potential autoantigens, we will seek insights into how these are associated with severe mental illnesses.
  •  
2.
  •  
3.
  • Kononenko, Olga, et al. (författare)
  • Opioid precursor protein isoform is targeted to the cell nuclei in the human brain
  • 2017
  • Ingår i: Biochimica et Biophysica Acta. - : Elsevier BV. - 0006-3002 .- 1878-2434 .- 0304-4165 .- 1872-8006. ; 1861:2, s. 246-255
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Neuropeptide precursors are traditionally viewed as proteins giving rise to small neuropeptide molecules. Prodynorphin (PDYN) is the precursor protein to dynorphins, endogenous ligands for the κ-opioid receptor. Alternative mRNA splicing of neuropeptide genes may regulate cell- and tissue-specific neuropeptide expression and produce novel protein isoforms. We here searched for novel PDYN mRNA and their protein product in the human brain.METHODS: Novel PDYN transcripts were identified using nested PCR amplification of oligo(dT) selected full-length capped mRNA. Gene expression was analyzed by qRT-PCR, PDYN protein by western blotting and confocal imaging, dynorphin peptides by radioimmunoassay. Neuronal nuclei were isolated using fluorescence-activated nuclei sorting (FANS) from postmortem human striatal tissue. Immunofluorescence staining and confocal microscopy was performed for human caudate nucleus.RESULTS: Two novel human PDYN mRNA splicing variants were identified. Expression of one of them was confined to the striatum where its levels constituted up to 30% of total PDYN mRNA. This transcript may be translated into ∆SP-PDYN protein lacking 13 N-terminal amino acids, a fragment of signal peptide (SP). ∆SP-PDYN was not processed to mature dynorphins and surprisingly, was targeted to the cell nuclei in a model cellular system. The endogenous PDYN protein was identified in the cell nuclei in human striatum by western blotting of isolated neuronal nuclei, and by confocal imaging.CONCLUSIONS AND GENERAL SIGNIFICANCE: High levels of alternatively spliced ∆SP-PDYN mRNA and nuclear localization of PDYN protein suggests a nuclear function for this isoform of the opioid peptide precursor in human striatum.
  •  
4.
  • Lindholm Carlström, Eva, et al. (författare)
  • Transcriptome analysis of post-mortem brain tissue reveals up-regulation of the complement cascade in a subgroup of schizophrenia patients
  • 2021
  • Ingår i: Genes. - : MDPI. - 2073-4425. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia is a genetically complex neuropsychiatric disorder with largely unresolved mechanisms of pathology. Identification of genes and pathways associated with schizophrenia is important for understanding the development, progression and treatment of schizophrenia. In this study, pathways associated with schizophrenia were explored at the level of gene expression. The study included post-mortem brain tissue samples from 68 schizophrenia patients and 44 age and sex-matched control subjects. Whole transcriptome poly-A selected paired-end RNA sequencing was performed on tissue from the prefrontal cortex and orbitofrontal cortex. RNA expression differences were detected between case and control individuals, focusing both on single genes and pathways. The results were validated with RT-qPCR. Significant differential expression between patient and controls groups was found for 71 genes. Gene ontology analysis of differentially expressed genes revealed an up-regulation of multiple genes in immune response among the patients (corrected p-value = 0.004). Several genes in the category belong to the complement system, including C1R, C1S, C7, FCN3, SERPING1, C4A and CFI. The increased complement expression is primarily driven by a subgroup of patients with increased expression of immune/inflammatory response genes, pointing to important differences in disease etiology within the patient group. Weighted gene co-expression network analysis highlighted networks associated with both synaptic transmission and activation of the immune response. Our results demonstrate the importance of immune-related pathways in schizophrenia and provide evidence for elevated expression of the complement cascade as an important pathway in schizophrenia pathology. 
  •  
5.
  • Torabi Moghadam, Behrooz, et al. (författare)
  • Analyzing DNA methylation patterns in Schizophrenic patients using machine learning methods
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Schizophrenia is common mental disorder with known genetic component involved. Since the association of environmental factors and schizophrenia has been reported, we analyzed a cohort of 75 schizophrenic and 50 control samples to investigate DNA methylation patterns, as one of the key players of epigenetic gene regulation.Here we applied machine-learning and visualization methods, which were shown previously to be successful in detecting and highlighting differentially methylated patterns between cases and controls. On this data set, however, these methods did not uncover any signal discerning schizophrenia patients and healthy controls, suggesting that if a link exists, it is heterogeneous and complex.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy