SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stoessl A. Jon) "

Sökning: WFRF:(Stoessl A. Jon)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wray, Selina, et al. (författare)
  • Creation of an Open-Access, Mutation-Defined Fibroblast Resource for Neurological Disease Research
  • 2012
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Our understanding of the molecular mechanisms of many neurological disorders has been greatly enhanced by the discovery of mutations in genes linked to familial forms of these diseases. These have facilitated the generation of cell and animal models that can be used to understand the underlying molecular pathology. Recently, there has been a surge of interest in the use of patient-derived cells, due to the development of induced pluripotent stem cells and their subsequent differentiation into neurons and glia. Access to patient cell lines carrying the relevant mutations is a limiting factor for many centres wishing to pursue this research. We have therefore generated an open-access collection of fibroblast lines from patients carrying mutations linked to neurological disease. These cell lines have been deposited in the National Institute for Neurological Disorders and Stroke (NINDS) Repository at the Coriell Institute for Medical Research and can be requested by any research group for use in in vitro disease modelling. There are currently 71 mutation-defined cell lines available for request from a wide range of neurological disorders and this collection will be continually expanded. This represents a significant resource that will advance the use of patient cells as disease models by the scientific community.
  •  
2.
  • Barker, Roger A., et al. (författare)
  • GDNF and Parkinson's Disease : Where Next? A Summary from a Recent Workshop
  • 2020
  • Ingår i: Journal of Parkinson's Disease. - 1877-7171. ; 10:3, s. 875-891
  • Tidskriftsartikel (refereegranskat)abstract
    • The concept of repairing the brain with growth factors has been pursued for many years in a variety of neurodegenerative diseases including primarily Parkinson's disease (PD) using glial cell line-derived neurotrophic factor (GDNF). This neurotrophic factor was discovered in 1993 and shown to have selective effects on promoting survival and regeneration of certain populations of neurons including the dopaminergic nigrostriatal pathway. These observations led to a series of clinical trials in PD patients including using infusions or gene delivery of GDNF or the related growth factor, neurturin (NRTN). Initial studies, some of which were open label, suggested that this approach could be of value in PD when the agent was injected into the putamen rather than the cerebral ventricles. In subsequent double-blind, placebo-controlled trials, the most recent reporting in 2019, treatment with GDNF did not achieve its primary end point. As a result, there has been uncertainty as to whether GDNF (and by extrapolation, related GDNF family neurotrophic factors) has merit in the future treatment of PD. To critically appraise the existing work and its future, a special workshop was held to discuss and debate this issue. This paper is a summary of that meeting with recommendations on whether there is a future for this therapeutic approach and also what any future PD trial involving GDNF and other GDNF family neurotrophic factors should consider in its design.
  •  
3.
  • Kalia, Lorraine V, et al. (författare)
  • Clinical Correlations With Lewy Body Pathology in LRRK2-Related Parkinson Disease.
  • 2015
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 72:1, s. 100-105
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of genetic Parkinson disease (PD) known to date. The clinical features of manifesting LRRK2 mutation carriers are generally indistinguishable from those of patients with sporadic PD. However, some PD cases associated with LRRK2 mutations lack Lewy bodies (LBs), a neuropathological hallmark of PD. We investigated whether the presence or absence of LBs correlates with different clinical features in LRRK2-related PD.
  •  
4.
  • Antonini, Angelo, et al. (författare)
  • Developing consensus among movement disorder specialists on clinical indicators for identification and management of advanced Parkinson’s disease : a multi-country Delphi-panel approach
  • 2018
  • Ingår i: Current Medical Research and Opinion. - : Informa UK Limited. - 0300-7995 .- 1473-4877. ; 34:12, s. 2063-2073
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Lack of a global consensus on the definition of advanced Parkinson’s disease (APD) and considerations for timing of device-aided therapies may result in heterogeneity in care. Objectives: To reach consensus among movement disorder specialists regarding key patient characteristics indicating transition to APD and guiding appropriate use of device-aided therapies in the management of PD symptoms. Methods: A Delphi-panel approach was utilized to synthesize opinions of movement disorder specialists and build consensus. Results: A panel was comprised of movement disorder specialists from 10 European countries with extensive experience of treating PD patients (mean =24.8 ± 7.2 years). Consensus on indicators of suspected APD and eligibility for device-aided therapies were based on motor symptoms, non-motor symptoms, and functional impairments. Key indicators of APD included: (i) motor—moderate troublesome motor fluctuations, ≥1 h of troublesome dyskinesia/day, ≥2 h “off” symptoms/day, and ≥5-times oral levodopa doses/day; (ii) non-motor—mild dementia, and non-transitory troublesome hallucinations; (iii) functional impairment—repeated falls despite optimal treatment, and difficulty with activities of daily living. Patients with good levodopa response, good cognition, and <70 years of age were deemed as good candidates for all three device-aided therapies. Patients with troublesome dyskinesia were considered good candidates for both levodopa-carbidopa intestinal gel and Deep Brain Stimulation (DBS). PD patients with levodopa-resistant tremor were considered good candidates for DBS. Conclusion: Identifying patients progressing to APD and suitable for device-aided therapies will enable general neurologists to assess the need for referral to movement disorder specialists and improve the quality of care and patient outcomes.
  •  
5.
  • Bastide, Matthieu F, et al. (författare)
  • Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease.
  • 2015
  • Ingår i: Progress in Neurobiology. - : Elsevier BV. - 1873-5118 .- 0301-0082. ; 132:Jul 21, s. 96-168
  • Forskningsöversikt (refereegranskat)abstract
    • Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
  •  
6.
  • Perez-Soriano, Alexandra, et al. (författare)
  • PBB3 imaging in Parkinsonian disorders : Evidence for binding to tau and other proteins
  • 2017
  • Ingår i: Movement Disorders. - : Wiley. - 0885-3185. ; 32:7, s. 1016-1024
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND OBJECTIVES: To study selective regional binding for tau pathology in vivo, using PET with [(11) C]PBB3 in PSP patients, and other conditions not typically associated with tauopathy.METHODS: Dynamic PET scans were obtained for 70 minutes after the bolus injection of [(11) C]PBB3 in 5 PSP subjects, 1 subject with DCTN1 mutation and PSP phenotype, 3 asymptomatic SNCA duplication carriers, 1 MSA subject, and 6 healthy controls of similar age. Tissue reference Logan analysis was applied to each region of interest using a cerebellar white matter reference region.RESULTS: In comparison to the control group, PSP subjects showed specific uptake of [(11) C]PBB3 in putamen, midbrain, GP, and SN. Longer disease duration and more advanced clinical severity were generally associated with higher tracer retention. A DCTN1/PSP phenotype case showed increased binding in putamen, parietal lobe, and GP. In SNCA duplication carriers, there was a significant increase of [(11) C] PBB3 binding in GP, putamen, thalamus, ventral striatum, SN, and pedunculopontine nucleus. The MSA case showed increased binding in frontal lobe, GP, midbrain, parietal lobe, putamen, temporal lobe, SN, thalamus, and ventral striatum.CONCLUSIONS: All PSP patients showed increased retention of the tracer in the basal ganglia, as expected. Binding was also present in asymptomatic SNCA duplication carriers and in an MSA case, which are not typically associated with pathological tau deposition. This suggests the possibility that [(11) C]PBB3 binds to alpha-synuclein. © 2017 International Parkinson and Movement Disorder Society.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy