SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Storm Patrik 1966 ) "

Sökning: WFRF:(Storm Patrik 1966 )

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hall, Michael, 1980-, et al. (författare)
  • The lumenal pentapeptide repeat proteins TL15 and TL20.3 are novel chaperone-like proteins in the chloroplast lumen of higher plants
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • In the thylakoid lumen of Arabidopsis thaliana, three pentapeptide repeat family proteins of unknown function are localized. Pentapeptide repeat proteins (PRP) are comprised of at least eight tandem repeats of five amino acids of the consensus sequence A(D/N)LXX, which fold into a quadrilateral beta helix structure. Here we have solved the crystal structure of the mature form of the lumenal PRP protein TL15 to 1.3 Å resolution. TL15 is comprised of a main pentapeptide domain, consisting of a total of 19 pentapeptide repeats which form five turns of a beta helix, and a C-terminal alpha helix domain consisting of two alpha helices. The alpha helices form a ‘cap’ at the C-terminal end of the beta helix and are connected by a disulphide bond between the conserved cysteine residues C122 and C142. Furthermore we show that the lumenal PRPs TL15 and TL20.3 can assist in refolding of a chemically denatured substrate in vitro, indicating foldase chaperone activity. The three lumenal PRPs have been previously identified as targets of thioredoxin, and interestingly we observed a greatly increased chaperone activity of TL15 and TL20.3 after reduction of their disulphide bonds. Our results provide the high resolution crystal structure of the TL15 protein and our analysis of chaperone activity suggests that TL15 and TL20.3 may constitute a novel type of redox-regulated molecular chaperones in the chloroplast lumen of higher plants.
  •  
2.
  •  
3.
  • Storm, Patrik, 1966-, et al. (författare)
  • Refolding and enzyme kinetic studies on the ferrochelatase of the cyanobacterium synechocystis sp. PCC 6803
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Heme is a cofactor for proteins participating in many important cellular processes, including respiration, oxygen metabolism and oxygen binding. The key enzyme in the heme biosynthesis pathway is ferrochelatase (protohaem ferrolyase, EC 4.99.1.1), which catalyzes the insertion of ferrous iron into protoporphyrin IX. In higher plants, the ferrochelatase enzyme is localized not only in mitochondria, but also in chloroplasts. The plastidic type II ferrochelatase contains a C-terminal chlorophyll a/b (CAB) motif, a conserved hydrophobic stretch homologous to the CAB domain of plant light harvesting proteins and light-harvesting like proteins. This type II ferrochelatase, found in all photosynthetic organisms, is presumed to have evolved from the cyanobacterial ferrochelatase. Here we describe a detailed enzymological study on recombinant, refolded and functionally active type II ferrochelatase (FeCh) from the cyanobacterium Synechocystis sp. PCC 6803. A protocol was developed for the functional refolding and purification of the recombinant enzyme from inclusion bodies, without truncation products or soluble aggregates. The refolded FeCh is active in its monomeric form, however, addition of an N-terminal His6-tag has significant effects on its enzyme kinetics. Strikingly, removal of the C-terminal CAB-domain led to a greatly increased turnover number, kcat, compared to the full length protein. While pigments isolated from photosynthetic membranes decrease the activity of FeCh, direct pigment binding to the CAB domain of FeCh was not evident.
  •  
4.
  • Ådén, Jörgen, 1980-, et al. (författare)
  • Arabidopsis thaliana peroxiredoxin Q is extraordinarily dynamic on the μs-ms timescale
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Peroxiredoxin Q (PrxQ) isolated from Arabidopsis thaliana belongs to a family of redox enzymes called peroxiredoxins, which are thioredoxin- or glutaredoxin dependent peroxidases acting to reduce peroxides and in particular hydrogen peroxide. PrxQ cycles between an active reduced state and an inactive oxidized state during its catalytic cycle. The catalytic mechanism involves a nucleophilic attack of the catalytic cysteine on hydrogen peroxide to generate a sulfonic acid intermediate with a concerted release of a water molecule. This intermediate is subsequently relaxed by the reaction of a second cysteine, denoted as the resolving cysteine, generating an intermolecular disulphide bond to expel a second water molecule into solution. PrxQ is finally recycled to the active state by a thioredoxin dependent reduction. Previous structural studies of PrxQ homologues have provided the structural basis for the switch between reduced and oxidized conformations. Here we have performed a detailed study of the structure and dynamics of PrxQ in both the oxidized and reduced state. Reliable and experimentally validated structural models of PrxQ in both oxidation states were generated using homology based modeling. Model-free analyses of NMR spin relaxation show that PrxQ is monomeric in both oxidation states. As evident from fast R2 relaxation rates the reduced form of PrxQ undergoes unprecedented dynamics on the slow μs-ms timescale. The ground state of the conformational dynamics is likely the stably folded reduced state as implied by circular dichroism spectroscopy. We speculate that the extensive dynamics is intimately related to the catalytic function of PrxQ.
  •  
5.
  • Ådén, Jörgen, 1980-, et al. (författare)
  • Extraordinary μs-ms backbone dynamics in Arabidopsis thaliana peroxiredoxin Q
  • 2011
  • Ingår i: Biochimica et Biophysica Acta. - : Elsevier. - 0006-3002 .- 1878-2434. ; 1814:12, s. 1880-1890
  • Tidskriftsartikel (refereegranskat)abstract
    • Peroxiredoxin Q (PrxQ) isolated from Arabidopsis thaliana belongs to a family of redox enzymes called peroxiredoxins, which are thioredoxin- or glutaredoxin-dependent peroxidases acting to reduce peroxides and in particular hydrogen peroxide. PrxQ cycles between an active reduced state and an inactive oxidized state during its catalytic cycle. The catalytic mechanism involves a nucleophilic attack of the catalytic cysteine on hydrogen peroxide to generate a sulfonic acid intermediate with a concerted release of a water molecule. This intermediate is subsequently relaxed by the reaction of a second cysteine, denoted the resolving cysteine, generating an intramolecular disulfide bond and release of a second water molecule. PrxQ is recycled to the active state by a thioredoxin-dependent reduction. Previous structural studies of PrxQ homologues have provided the structural basis for the switch between reduced and oxidized conformations. Here, we have performed a detailed study of the activity, structure and dynamics of PrxQ in both the oxidized and reduced states. Reliable and experimentally validated structural models of PrxQ in both oxidation states were generated using homology based modeling. Analysis of NMR spin relaxation rates shows that PrxQ is monomeric in both oxidized and reduced states. As evident from R(2) relaxation rates the reduced form of PrxQ undergoes unprecedented dynamics on the slow μs-ms timescale. The ground state of this conformational dynamics is likely the stably folded reduced state as implied by circular dichroism spectroscopy. We speculate that the extensive dynamics is intimately related to the catalytic function of PrxQ.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy