SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stråhlman Christian Filosofie doktor 1987 ) "

Sökning: WFRF:(Stråhlman Christian Filosofie doktor 1987 )

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kühn, Danilo, et al. (författare)
  • Capabilities of Angle Resolved Time of Flight electron spectroscopy with the 60 degrees wide angle acceptance lens
  • 2018
  • Ingår i: Journal of Electron Spectroscopy and Related Phenomena. - : Elsevier. - 0368-2048 .- 1873-2526. ; 224, s. 45-50
  • Tidskriftsartikel (refereegranskat)abstract
    • The simultaneous detection of energy, momentum and temporal information in electron spectroscopy is the key aspect to enhance the detection efficiency in order to broaden the range of scientific applications. Employing a novel 60 degrees wide angle acceptance lens system, based on an additional accelerating electron optical element, leads to a significant enhancement in transmission over the previously employed 30 degrees electron lenses. Due to the performance gain, optimized capabilities for time resolved electron spectroscopy and other high transmission applications with pulsed ionizing radiation have been obtained. The energy resolution and transmission have been determined experimentally utilizing BESSY II as a photon source. Four different and complementary lens modes have been characterized. (C) 2017 The Authors. Published by Elsevier B.V.
  •  
2.
  • Kukk, E., et al. (författare)
  • Energy-dependent timescales in the dissociation of diiodothiophene dication
  • 2023
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 25:7, s. 5795-5807
  • Tidskriftsartikel (refereegranskat)abstract
    • Photodissociation molecular dynamics of gas-phase 2,5-diiodothiophene molecules was studied in an electron-energy-resolved electron-multi-ion coincidence experiment performed at the FinEstBeAMS beamline of MAX IV synchrotron. Following the photoionization of the iodine 4d subshell and the Auger decay, the dissociation landscape of the molecular dication was investigated as a function of the Auger electron energy. Concentrating on an major dissociation pathway, C4H2I2S2+ -> C4H2S+ + I+ + I, and accessing the timescales of the process via ion momentum correlation analysis, it was revealed how this three-body process changes depending on the available internal energy. Using a generalized secondary dissociation model, the process was shown to evolve from secondary dissociation regime towards concerted dissociation as the available energy increased, with the secondary dissociation time constant changing from 1.5 ps to 129 fs. The experimental results were compared with simulations using a stochastic charge-hopping molecular mechanics model. It represented the observed trend and also gave a fair quantitative agreement with the experiment.
  •  
3.
  • Pihlava, L., et al. (författare)
  • Photodissociation dynamics of halogenated aromatic molecules: the case of core-ionized tetrabromothiophene
  • 2021
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 23:37, s. 21249-21261
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied the gas-phase photodissociation of a fully halogenated aromatic molecule, tetrabromothiophene, upon core-shell ionization by using synchrotron radiation and energy-resolved multiparticle coincidence spectroscopy. Photodynamics was initiated by the selective soft X-ray ionization of three elements - C, S, and Br - leading to the formation of dicationic states by Auger decay. From a detailed study of photodissociation upon Br 3d ionization, we formulate a general fragmentation scheme, where dissociation into neutral fragments and a pair of cations prevails, but dicationic species are also produced. We conclude that dicationic tetrabromothiophene typically undergoes deferred charge separation (with one of the ions being often Br+) that may be followed by secondary dissociation steps, depending on the available internal energy of the parent dication. Observations suggest that the ejection of neutral bromine atoms as the first step of deferred charge separation is a prevailing feature in dicationic dissociation, although sometimes in this step the C-Br bonds appear to remain intact and the thiophene ring is broken instead. Ionization-site-specific effects are observed particularly in doubly charged fragments and as large differences in the yields of the intact parent dication. We interpret these effects, using first-principles calculations and molecular dynamics simulations of core-hole states, as likely caused by the geometry changes during the core-hole lifetime.
  •  
4.
  • Pihlava, Lassi, et al. (författare)
  • Photodissociation of bromine-substituted nitroimidazole radiosensitizers
  • 2023
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 25:18, s. 13004-13011
  • Tidskriftsartikel (refereegranskat)abstract
    • Heavy elements and some nitroimidazoles both exhibit radiosensitizing properties through different mechanisms. In an effort to see how the overall radiosensitivity might be affected when the two radiosensitizers are combined in the same molecule, we studied the gas-phase photodissociation of two brominated nitroimidazoles and a bromine-free reference sample. Synchrotron radiation was employed to initiate the photodynamics and energy-resolved multiparticle coincidence spectroscopy was used to study the ensuing dissociation. We observed the brominated samples releasing high amounts of potentially radiosensitizing fragments upon dissociation. Since bromination also increases the likelihood of the drug molecule being ionised per a given X-ray dose, we conclude that heavy-element substitution of nitroimidazoles appears to be a viable path towards new, potent radiosensitizer drugs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy