SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Strålfors Peter Professor) "

Sökning: WFRF:(Strålfors Peter Professor)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aboulaich, Nabila, 1976- (författare)
  • Expanding role of caveolae in control of adipocyte metabolism : proteomics of caveolae
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The primary function of adipose tissue is to store energy in the form of triacylglycerol, which is hydrolyzed to fatty acids to supply other tissues with energy. While insulin promotes the storage of triacylglycerol, catecholamines stimulate its hydrolysis. The development of type II diabetes is strongly associated with obesity, indicating a role of triacylglycerol metabolism in the pathogenesis of diabetes. Caveolae are plasma membrane invaginations found in most cells but are highly abundant in adipocytes. Insulin receptors are localized in caveolae and their function depends on intact caveolae structures. In the present thesis work, mass spectrometry-based methodology allowed identification of a number of new proteins and their posttranslational modifications in caveolae of human adipocytes. Variable N-terminal acetylation and phosphorylation of caveolin-1α and caveolin-1β were identified, which might regulate the function of caveolae. The transcription regulator protein PTRF was identified as the major caveolae associated protein. Specific proteolytic modifications of PTRF at the cytosolic surface of caveolae and phosphorylation on nine serine and one threonine residues were identified. Moreover, insulin induced translocation of PTRF from the plasma membrane to the nucleus. PTRF was previously shown to regulate the activity of both RNA polymerase I and polymerase II, thus a role of PTRF in mediating the anabolic action of insulin on protein synthesis and gene transcription is proposed.PTRF was also involved in an extranuclear function in the hormonal regulation of triacylglycerol metabolism in caveolae. PTRF was colocalized with the triacylglycerol regulator proteins perilipin and hormone-sensitive lipase (HSL) in the triacylglycerol-synthesizing caveolae subclass. We showed that, while perilipin was translocated to the plasma membrane, both PTRF and HSL were translocated from the plasma membrane to the cytosol as a complex in response to insulin. The perilipin recruited to the plasma membrane was highly threonine phosphorylated. By mass spectrometry, three phosphorylated threonine residues were identified and were located in an acidic domain in the lipid droplet targeting domain of perilipin. The insulin-induced recruitment of perilipin to the plasma membrane might, therefore be phosphorylation-dependent. Isoproterenol, which stimulates hydrolysis of triacylglycerol, induced a complete depletion of perilipin B from the plasma membrane, suggesting a function of perilipin B to protect newly synthesized triacylglycerol in caveolae from being hydrolyzed by HSL. The location of PTRF and HSL was not affected by isoproterenol, indicating that insulin is acting against a default presence of PTRF and HSL in caveolae.Taken together, this thesis expands our knowledge about caveolae and provided valuable information about their involvement in novel roles, particularly in the hormonal regulation of triacylglycerol metabolism.
  •  
2.
  • Brännmark, Cecilia, 1983- (författare)
  • Insulin Signaling in Human Adipocytes a Systems Biology Approach
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Obesity and a sedentary life style are associated with type 2 diabetes, a disease starting with insulin resistance in the adipose tissue, which spreads to the whole body. Despite large research efforts to understand the insulin signaling system, there is little knowledge of the mechanisms behind insulin resistance and type 2 diabetes developments. We have herein focused on the insulin signaling in adipocytes, elucidating mechanisms for early signaling. We have also modeled isolated adipocytes and data from the in vivo, whole bodysituation, concurrently. We also mapped and quantitatively described differences in the insulin signaling of adipocytes from type 2 diabetics and non-diabetics.In paper I we show that neither insulin degradation, receptor internalization, nor feedback signals can as separate explanations cause the overshoot in tyrosine phosphorylation of IRS1, while an endocytosis-dependent feedback mechanism explains all available data.In paper II we show that it is not possible to scale up the experimentally determined glucose uptake by isolated human adipocytes to match the glucose uptake profile of the whole adipose tissue in vivo. Other insulin effects need to be accounted for.In paper III we show that attenuation of the positive feedback to serine 307 phosphorylation of IRS1 can explain the insulin resistance in the insulin signaling in adipocytes seen in type 2 diabetes. However, to fully explain both the signaling and the glucose uptake, a reduction in the amount of Glut4 is also needed.
  •  
3.
  • Jufvas, Åsa, 1982- (författare)
  • Human Adipocytes : Proteomic Approaches
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Type 2 diabetes is characterized by increased levels of glucose in the blood originating from insulin resistance in insulin sensitive tissues and from reduced pancreatic insulin production. Around 400 million people in the world are diagnosed with type 2 diabetes and the correlation with obesity is strong. In addition to life style induction of obesity and type 2 diabetes, there are indications of genetic and epigenetic influences. This thesis has focused on the characterization of primary human adipocytes, who play a crucial role in the development of type 2 diabetes.Histones are important proteins in chromatin dynamics and may be one of the factors behind epigenetic inheritance. In paper I, we characterized histone variants and posttranslational modifications in human adipocytes. Several of the specific posttranslational histone modifications we identified have been characterized in other cell types, but the majority was not previously known. Moreover, we identified a variant of histone H4 on protein level for the first time.In paper II, we studied specific histone H3 methylations in the adipocytes. We found that overweight is correlated with a reduction of H3K4me2 while type 2 diabetes is associated with an increase of H3K4me3. This shows a genome-wide difference in important chromatin modifications that could help explain the epidemiologically shown association between epigenetics and metabolic health.Caveolae is a plasma membrane structure involved in the initial and important steps of insulin signaling. In paper III we characterized the IQGAP1 interactome in human adipocytes and suggest that IQGAP1 is a link between caveolae and the cytoskeleton. Moreover, the amount of IQGAP1 is drastically lower in adipocytes from type 2 diabetic subjects compared with controls implying a potential role for IQGAP1 in insulin resistance.In conclusion, this thesis provides new insights into the insulin signaling frameworks and the histone variants and modifications of human adipocytes.
  •  
4.
  • Aili Fagerholm, Siri, 1980- (författare)
  • Insulin signaling in primary adipocytes in insulin sensitive and insulin resistant states
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Increasing numbers of people world-wide develops the disease type 2 diabetes. Development of type 2 diabetes is characterized by a shift from an insulin sensitive state to an insulin resistant state in peripheral insulin responding organs, which originates from the development of insulin resistance in the adipose tissue. Insulin resistance in combination with reduced pancreatic insulin secretion lead to overt type 2 diabetes.In this thesis, the insulin signaling network in primary adipocytes was analyzed. Key proteins and mechanisms were studied to gain deeper knowledge of signaling both in the insulin sensitive state and in the insulin resistant state produced by rapid weight gain as well as in type 2 diabetes.The surface of the adipocyte is dotted with invaginations in the cell membrane called caveolae that act as important metabolic and signaling platforms in adipocytes, and also harbor the insulin receptor. In paper I we show that insulin stimulation of primary adipocytes results in a rapid phosphorylation of the insulin receptor and caveolin-1, and that internalization of the proteins is mediated by endocytosis of caveolae.Weight gain due to overfeeding and obesity has been associated with the development of insulin resistance in insulin sensitive tissues such as the adipose tissue. In paper II we show that short-term overfeeding for one month of lean subjects results in an insulin resistant state. At the end of the study, the subjects had developed a mild systemic insulin resistance. Moreover, in isolated subcutaneous adipocytes we found several alterations of the insulin signaling pathway that mimicked alterations found in isolated subcutaneous adipocytes from subjects with type 2 diabetes.In paper III we present a first dynamic mathematical model of the insulin signaling network in human adipocytes that are based on experimental data acquired in a consistent fashion. The model takes account of insulin signaling in both the healthy, insulin sensitive state and in the insulin resistant state of type 2 diabetes. We show that attenuated mTORC1-mediated positive feedback to control of phosphorylation of IRS1 at Ser307 is an essential component of the insulin resistant state of type 2 diabetes. A future application of the model is the identification and evaluation of drug targets for the treatment of insulin resistance and type 2 diabetes.In paper IV we examine the protein kinase that catalyzes the insulin stimulated mTORC1- mediated feedback to IRS1. We find that the phosphorylation of IRS1 at Ser307 is not likely to be catalyzed by the kinases S6K1, mTOR or PKB. However, a catalyzing protein kinase for the in vitro phosphorylation of IRS1 at Ser307 was found to be associated with the complex mTORC1.In conclusion, this thesis provide new insights and characterize mechanisms of the intrinsically complex insulin signaling network of primary adipocytes, both in insulin sensitive and insulin resistant states.
  •  
5.
  • Johansson, Rikard, 1982- (författare)
  • Model-Based Hypothesis Testing in Biomedicine : How Systems Biology Can Drive the Growth of Scientific Knowledge
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The utilization of mathematical tools within biology and medicine has traditionally been less widespread compared to other hard sciences, such as physics and chemistry. However, an increased need for tools such as data processing, bioinformatics, statistics, and mathematical modeling, have emerged due to advancements during the last decades. These advancements are partly due to the development of high-throughput experimental procedures and techniques, which produce ever increasing amounts of data. For all aspects of biology and medicine, these data reveal a high level of inter-connectivity between components, which operate on many levels of control, and with multiple feedbacks both between and within each level of control. However, the availability of these large-scale data is not synonymous to a detailed mechanistic understanding of the underlying system. Rather, a mechanistic understanding is gained first when we construct a hypothesis, and test its predictions experimentally. Identifying interesting predictions that are quantitative in nature, generally requires mathematical modeling. This, in turn, requires that the studied system can be formulated into a mathematical model, such as a series of ordinary differential equations, where different hypotheses can be expressed as precise mathematical expressions that influence the output of the model.Within specific sub-domains of biology, the utilization of mathematical models have had a long tradition, such as the modeling done on electrophysiology by Hodgkin and Huxley in the 1950s. However, it is only in recent years, with the arrival of the field known as systems biology that mathematical modeling has become more commonplace. The somewhat slow adaptation of mathematical modeling in biology is partly due to historical differences in training and terminology, as well as in a lack of awareness of showcases illustrating how modeling can make a difference, or even be required, for a correct analysis of the experimental data.In this work, I provide such showcases by demonstrating the universality and applicability of mathematical modeling and hypothesis testing in three disparate biological systems. In Paper II, we demonstrate how mathematical modeling is necessary for the correct interpretation and analysis of dominant negative inhibition data in insulin signaling in primary human adipocytes. In Paper III, we use modeling to determine transport rates across the nuclear membrane in yeast cells, and we show how this technique is superior to traditional curve-fitting methods. We also demonstrate the issue of population heterogeneity and the need to account for individual differences between cells and the population at large. In Paper IV, we use mathematical modeling to reject three hypotheses concerning the phenomenon of facilitation in pyramidal nerve cells in rats and mice. We also show how one surviving hypothesis can explain all data and adequately describe independent validation data. Finally, in Paper I, we develop a method for model selection and discrimination using parametric bootstrapping and the combination of several different empirical distributions of traditional statistical tests. We show how the empirical log-likelihood ratio test is the best combination of two tests and how this can be used, not only for model selection, but also for model discrimination.In conclusion, mathematical modeling is a valuable tool for analyzing data and testing biological hypotheses, regardless of the underlying biological system. Further development of modeling methods and applications are therefore important since these will in all likelihood play a crucial role in all future aspects of biology and medicine, especially in dealing with the burden of increasing amounts of data that is made available with new experimental techniques.
  •  
6.
  • Lövfors, William, 1991-, et al. (författare)
  • A systems biology analysis of lipolysis and fatty acid release from adipocytes in vitro and from adipose tissue in vivo
  • 2021
  • Ingår i: PLOS ONE. - San Fransisco, United States : Public Library of Science. - 1932-6203. ; 16:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipolysis and the release of fatty acids to supply energy fuel to other organs, such as between meals, during exercise, and starvation, are fundamental functions of the adipose tissue. The intracellular lipolytic pathway in adipocytes is activated by adrenaline and noradrenaline, and inhibited by insulin. Circulating fatty acids are elevated in type 2 diabetic individuals. The mechanisms behind this elevation are not fully known, and to increase the knowledge a link between the systemic circulation and intracellular lipolysis is key. However, data on lipolysis and knowledge from in vitro systems have not been linked to corresponding in vivo data and knowledge in vivo. Here, we use mathematical modelling to provide such a link. We examine mechanisms of insulin action by combining in vivo and in vitro data into an integrated mathematical model that can explain all data. Furthermore, the model can describe independent data not used for training the model. We show the usefulness of the model by simulating new and more challenging experimental setups in silico, e.g. the extracellular concentration of fatty acids during an insulin clamp, and the difference in such simulations between individuals with and without type 2 diabetes. Our work provides a new platform for model-based analysis of adipose tissue lipolysis, under both non-diabetic and type 2 diabetic conditions.
  •  
7.
  • Nyman, Elin, 1983- (författare)
  • Insulin signaling dynamics in human adipocytes : Mathematical modeling reveals mechanisms of insulin resistance in type 2 diabetes
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Type 2 diabetes is characterized by raised blood glucose levels caused by an insufficient insulin control of glucose homeostasis. This lack of control is expressed both through insufficient release of insulin by the pancreatic beta-cells, and through insulin resistance in the insulin-responding tissues. We find insulin resistance of the adipose tissue particularly interesting since it appears to influence other insulin-responding tissues, such as muscle and liver, to also become insulin resistant.The insulin signaling network is highly complex with cross-interacting intermediaries, positive and negative feedbacks, etc. To facilitate the mechanistic understanding of this network, we obtain dynamic, information-rich data and use model-based analysis as a tool to formally test different hypotheses that arise from the experimental observations. With dynamic mathematical models, we are able to combine knowledge and experimental data into mechanistic hypotheses, and draw conclusions such as rejection of hypotheses and prediction of outcomes of new experiments.We aim for an increased understanding of adipocyte insulin signaling and the underlying mechanisms of the insulin resistance that we observe in adipocytes from subjects diagnosed with type 2 diabetes. We also aim for a complete picture of the insulin signaling network in primary human adipocytes from normal and diabetic subjects with a link to relevant clinical parameters: plasma glucose and insulin. Such a complete picture of insulin signaling has not been presented before. Not for adipocytes and not for other types of cells.In this thesis, I present the development of the first comprehensive insulin signaling model that can simulate both normal and diabetic data from adipocytes – and that is linked to a whole-body glucose-insulin model. In the linking process we conclude that at least two glucose uptake parameters differ between the in vivo and in vitro conditions (Paper I). We also perform a model analysis of the early insulin signaling dynamics in rat adipocytes and conclude that internalization is important for an apparent reversed order of phosphorylation seen in these cells (Paper II). In the development of the first version of the comprehensive insulin signaling model, we introduce a key parameter for the diabetic state – an attenuated feedback (Paper III). We finally continue to build on the comprehensive model and include signaling to nuclear transcription via ERK and report substantial crosstalk in the insulin signaling network (Paper IV).
  •  
8.
  • Stenkula, Karin, 1973- (författare)
  • A molecular approach to insulin signalling and caveolae in primary adipocytes
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The prevalence of type II diabetes is increasing at an alarming rate due to the western world lifestyle. Type II diabetes is characterized by an insulin resistance distinguished by impaired glucose uptake in adipose and muscle tissues. The molecular mechanisms behind the insulin recistance and also the knowledge considering normal insulin signalling in fat cells, especially in humans, are still unclear.Insulin receptor substrate (IRS) is known to be important for medating the insulin-induced signal from the insulin receptor into the cell. We developed and optimized a method for transfection of primary human adipocytes by electroporation. By recombinant expression of proteins, we found a proper IRS to be crucial for both mitogenic and metabolic signalling in human adipocytes. In human, but not rat, primary adipocytes we found IRS1 to be located at the plasma membrane in non-insulin stimulated cells. Insulin stimulation resulted in a two-fold increase of the amount of IRS1 at the plasma membrane in human cells, compared with a 12-fold increase in rat cells. By recombinant expression of IRS1 we found the species difference between human and rat IRS1 to depend on the IRS proteins and not on properties of the host cell.The adipocytes function as an energy store, critical for maintaining the energy balance, and obesity strongly correlates with insulin resistance. The insulin sensitivity of the adipocytes with regard to the size of the cells was examined by separating small and large cells from the same subject. We found no increase of the GLUT4 translocation to the plasma membrane following insulin stimulation in the large cells, whereas there was a two-fold increase in the small cells. This finding supports the idea of a causal relationship between the enlarged fat cells and reduced insulin sensitivity found in obese subjects.The insulin receptor is located and functional in a specific membrane structure, the caveola. The morphology of the caveola and the localization of the caveolar marker proteins caveolin-1 and -2 were examined. Caveolae were shown to be connected to the exterior by a narrow neck. Caveolin was found to be located at the neck region of caveolae, which imply importance of caveolin for maintaining and sequestering caveolae to the plasma membrane.In conclusion, the transfection technique proved to be highly useful for molecular biological studies of insulin signal transduction and morphology in primary adipocytes.
  •  
9.
  • Rohini Rajan, Meenu, 1983- (författare)
  • Unraveling Mechanisms of Insulin Resistance in Type 2 Diabetes in Human Adipocytes : Role of extracellular signal regulated kinase 1/2 (ERK1/2) and forkhead box protein 01 (FOX01)
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Type 2 Diabetes is characterized by hyperglycemia primarily caused due to insulin resistance in insulin responsive tissues and insufficient production of insulin by the β-cells. Insulin resistance appears to develop first in the expanding adipose tissue during caloric surplus and affects other tissues like liver and muscle by ectopic fat accumulation. In spite of significant research in field of insulin signaling, very little has been known about the mechanisms that lead to insulin resistance and T2D.We aim for network-wide knowledge of insulin signaling in human adipocytes and to identify mechanisms that can induce insulin resistance in diabetic individuals. We have herein focused on the transcriptional control of insulin via ERK and FOXO1, and have used mathematical modelling to gain a systems-level understanding of insulin signaling network.Through the work in this thesis, we present for the first time a dynamic comprehensive model for insulin signaling for the adipocytes, for both metabolic and transcriptional control, and that can simulate data from both normal and diabetic individuals. We described insulin regulation of ERK phosphorylation and showed that both its insulin sensitivity and maxima  response to insulin was curtailed in adipocytes from diabetic individuals (Paper I). Our findings indicate that insulin regulated ERK pathway exerts control on transcription not only through phosphorylation of Elk-1 but also through phosphorylation of FOXO1 and exerts translational control via phosphorylation of ribosomal protein S6 (Paper I, II). Furthermore, we showed that insulin-induced FOXO1 phosphorylation or its insulin sensitivity was not impaired in diabetic individuals, although FOXO1 protein level was reduced by 45% in adipocytes from patients with type 2 diabetes. Comprehensive analysis of the detailed insulin signaling model showed that attenuation of the feedback from mTORC1 to IRS1-Ser307 explained dominant part of the insulin resistance seen in adipocytes from diabetic individuals (Paper II). More interestingly, inhibition of FOXO1 with a dominant negative construct of FOXO1, mimicked the diabetic state in the adipocytes, with the similarity extending to both insulin signaling as well as the reduced protein levels, as seen in the diabetic adipocytes. We also show that mTORC1 and FOXO1 maintain each other’s expression/activity in the human adipocytes (Paper II, III). Our findings thus demonstrate that the interplay between mTORC1 and FOXO1 maintains normal insulin signaling in the human adipocytes.
  •  
10.
  • Turkina, Maria, 1973- (författare)
  • Functional proteomics of protein phosphorylation in algal photosynthetic membranes
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Plants, green algae and cyanobacteria perform photosynthetic conversion of sunlight into chemical energy in the permanently changing natural environment. For successful survival and growth photosynthetic organisms have developed complex sensing and signaling acclimation mechanisms. The environmentally dependent protein phosphorylation in photosynthetic membranes is implied in the adaptive responses; however, the molecular mechanisms of this regulation are still largely unknown. We used a mass spectrometry-based approach to achieve a comprehensive mapping of the in vivo protein phosphorylation sites within photosynthetic membranes from the green alga Chlamydomonas reinhardtii subjected to distinct environmental conditions known to affect the photosynthetic machinery.The state transitions process regulating the energy distribution between two photosystems, involves the temporal functional coupling of phosphorylated light-harvesting complexes II (LHCII) to photosystem I (PSI). During state transitions several of the thylakoid proteins undergo redox-controlled phosphorylation-dephosphorylation cycles. This work provided evidences suggesting that redox-dependent phosphorylation-induced structural changes of the minor LHCII antenna protein CP29 determine the affinity of LHCII for either of the two photosystems. In state 1 the doubly phosphorylated CP29 acts as a linker between the photosystem II (PSII) core and the trimeric LHCII whereas in state 2 this quadruply phosphorylated CP29 would migrate to PSI on the PsaH side and provide the docking of LHCII trimers to the PSI complex. Moreover, this study revealed that exposure of Chlamydomonas cells to high light stress caused hyperphosphorylation of CP29 at seven distinct residues and suggested that high light-induced hyperphosphorylation of CP29 may uncouple this protein together with LHCII from both photosystems to minimize the damaging effects of excess light.Reversible phosphorylation of the PSII reaction center proteins was shown to be essential for the maintenance of active PSII under high light stress. Particularly dephosphorylation of the light-damaged D1 protein, a central functional subunit of the PSII reaction center, is required for its degradation and replacement. We found in the alga the reversible D1 protein phosphorylation, which until our work, has been considered as plant-specific.We also discovered specific induction of thylakoid protein phosphorylation during adaptation of alga to limiting environmental CO2. One of the phosphorylated proteins has five phosphorylation sites at both serine and treonine residues. The discovered specific low-CO2- and redox-dependent protein phosphorylation may be an early adaptive and signalling response of the green alga to limitation in inorganic carbon.This work provides the first comprehensive insight into the network of environmentally regulated protein phosphorylation in algal photosynthetic membranes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy