SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Strömberg Ingrid) "

Sökning: WFRF:(Strömberg Ingrid)

  • Resultat 1-10 av 89
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gad, Helge, et al. (författare)
  • MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool
  • 2014
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 508:7495, s. 215-221
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bindin the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.
  •  
2.
  • af Bjerkén, Sara, et al. (författare)
  • Effects of glial cell line-derived neurotrophic factor deletion on ventral mesencephalic organotypic tissue cultures.
  • 2007
  • Ingår i: Brain Research. - : Elsevier BV. - 0006-8993. ; 1133:1, s. 10-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Glial cell line-derived neurotrophic factor (GDNF) is potent for survival and promotion of nerve fibers from midbrain dopamine neurons. It is also known to exert different effects on specific subpopulations of dopamine neurons. In organotypic tissue cultures, dopamine neurons form two diverse nerve fiber growth patterns, targeting the striatum differently. The aim of this study was to investigate the effect of GDNF on the formation of dopamine nerve fibers. Organotypic tissue cultures of ventral mesencephalon of gdnf gene-deleted mice were studied. The results revealed that dopamine neurons survive in the absence of GDNF. Tyrosine hydroxylase immunoreactivity demonstrated, in gdnf knockout and wildtype cultures, nerve fiber formation with two separate morphologies occurring either in the absence or the presence of astrocytes. The outgrowth that occurred in the absence of astrocytes was unaffected by gdnf deletion, whereas nerve fibers guided by the presence of astrocytes were affected in that they reached significantly shorter distances from the gdnf gene-deleted tissue slice, compared to those measured in wildtype cultures. Treatment with GDNF reversed this effect and increased nerve fiber density independent of genotype. Furthermore, migration of astrocytes reached significantly shorter distances from the tissue slice in GDNF knockout compared to wildtype cultures. Exogenous GDNF increased astrocytic migration in gdnf gene-deleted tissue cultures, comparable to lengths observed in wildtype tissue cultures. In conclusion, cultured midbrain dopamine neurons survive in the absence of GDNF, and the addition of GDNF improved dopamine nerve fiber formation - possibly as an indirect effect of astrocytic stimulation.
  •  
3.
  • af Bjerkén, Sara, et al. (författare)
  • Inhibition of astrocytes promotes long-distance growing nerve fibers in ventral mesencephalic cultures
  • 2008
  • Ingår i: International Journal of Developmental Neuroscience. - : Wiley. - 0736-5748 .- 1873-474X. ; 26:7, s. 683-691
  • Tidskriftsartikel (refereegranskat)abstract
    • Tyrosine hydroxylase-positive nerve fiber formation occurs in two diverse morphological patterns in rat fetal ventral mesencephalic slice cultures; one is non-glial-associated and the other is glial-associated. The aim of this study was to characterize the non-glial-associated nerve fibers and its relation to migration of astrocytes. Organotypic slice cultures were prepared from embryonic days 12, 14, and 18 rat fetuses and maintained for 5, 7 or 14 days in vitro. Inhibition of cell proliferation using cytosine beta-D-arabinofuranoside was conducted in embryonic day 14 ventral mesencephalic cultures. The treatment impaired astrocytic migration at 7 and 14 days in vitro. The reduced migration of astrocytes exerted a negative effect on the glial-associated tyrosine hydroxylase-positive nerve fibers, reducing the outgrowth from the tissue slice. The non-glial-associated outgrowth was, however, positively affected by reduced astrocytic migration, reaching distances around 3mm in 2 weeks, and remained for longer time in culture. Co-cultures of fetal ventral mesencephalon and frontal cortex revealed the cortex as a target for the non-glial-associated tyrosine hydroxylase-positive outgrowth. The age of the fetal tissue at plating affected the astrocytes such that older tissue increased the length of astrocyte migration. Younger tissue at plating promoted the presence of non-glial-associated outgrowth and long radial-glia-like processes, while older tissue promoted migration of neurons instead of formation of nerve fiber network. In conclusion, inhibition of astrocytic proliferation promotes the persistence of long-distance growing tyrosine hydroxylase-positive nerve fibers in ventral mesencephalic slices cultures. Furthermore, the long-distance growing nerve fibers target the frontal cortex and are absent in cultures derived from older tissue.
  •  
4.
  •  
5.
  • af Bjerkén, Sara, et al. (författare)
  • Noradrenaline is crucial for the substantia nigra dopaminergic cell maintenance
  • 2019
  • Ingår i: Neurochemistry International. - : Elsevier. - 0197-0186 .- 1872-9754. ; 131
  • Tidskriftsartikel (refereegranskat)abstract
    • In Parkinson's disease, degeneration of substantia nigra dopaminergic neurons is accompanied by damage on other neuronal systems. A severe denervation is for example seen in the locus coerulean noradrenergic system. Little is known about the relation between noradrenergic and dopaminergic degeneration, and the effects of noradrenergic denervation on the function of the dopaminergic neurons of substantia nigra are not fully understood. In this study, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) was injected in rats, whereafter behavior, striatal KCl-evoked dopamine and glutamate releases, and immunohistochemistry were monitored at 3 days, 3 months, and 6 months. Quantification of dopamine-beta-hydroxylase-immunoreactive nerve fiber density in the cortex revealed a tendency towards nerve fiber regeneration at 6 months. To sustain a stable noradrenergic denervation throughout the experimental timeline, the animals in the 6-month time point received an additional DSP4 injection (2 months after the first injection). Behavioral examinations utilizing rotarod revealed that DSP4 reduced the time spent on the rotarod at 3 but not at 6 months. KCl-evoked dopamine release was significantly increased at 3 days and 3 months, while the concentrations were normalized at 6 months. DSP4 treatment prolonged both time for onset and reuptake of dopamine release over time. The dopamine degeneration was confirmed by unbiased stereology, demonstrating significant loss of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra. Furthermore, striatal glutamate release was decreased after DSP4. In regards of neuroinflammation, reactive microglia were found over the substantia nigra after DSP4 treatment. In conclusion, long-term noradrenergic denervation reduces the number of dopaminergic neurons in the substantia nigra and affects the functionality of the nigrostriatal system. Thus, locus coeruleus is important for maintenance of nigral dopaminergic neurons.
  •  
6.
  • af Bjerkén, Sara, 1979- (författare)
  • On dopamine neurons : nerve fiber outgrowth and L-DOPA effects
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Parkinson’s disease is a disorder mainly characterized by progressive degeneration of dopamine producing neurons in the substantia nigra of the midbrain. The most commonly used treatment strategy is to pharmacologically restore the lost function by the administration of the dopaminergic precursor L-DOPA. Another treatment strategy is to replace the degenerated neurons with immature fetal ventral mesencephalic tissue, or ultimately stem cell-derived tissue. Grafting trials have, however, revealed poor reinnervation capacity of the grafts, leaving much of the striata dopamine-denervated. An additional drawback is the upcoming of dyskinesia (involuntary movements), a phenomenon also observed during L-DOPA treatment of Parkinson’s disease patients. Attempts to characterize nerve fiber formation from dopamine neurons have demonstrated that the nerve fibers are formed in two morphologically diverse outgrowth patterns, one early outgrowth seen in the absence of astrocytes and one later appearing outgrowth seen in co-existence with astrocytes. The overall objective of this thesis has been to study the dopaminergic outgrowth including guidance of nerve fiber formation, and to look into the mechanisms of L-DOPA-induced dyskinesia. The first paper in this thesis characterizes the different outgrowth patterns described above and their relation to different glial cells. The study demonstrated the two different outgrowth patterns to be a general phenomenon, applying not only to dopamine neurons. Attempts of characterization revealed no difference of origin in terms of dopaminergic subpopulations, i.e. A9 or A10, between the outgrowth patterns. Furthermore, the “roller-drum” technique was found optimal for studying the dual outgrowth sequences. The second and the third paper also utilized the “roller-drum” technique in order to promote both patterns of neuronal fiber formation. The effects of glial cell line-derived neurotrophic factor (GDNF) on the formation of dopamine nerve fibers, was investigated. Cultures prepared from gdnf knockout mice revealed that dopaminergic neurons survive and form nerve fiber outgrowth in the absence of GDNF. The dopaminergic nerve fibers exhibited an outgrowth pattern consistent with that previous observed in rat. GDNF was found to exert effect on the glial-associated outgrowth whereas the non-glial-associated was not affected. Astrocytic proliferation was inhibited using cytosine β-D-arabinofuranoside, resulting in reduced glial-associated outgrowth. The non-glial-associated dopaminergic outgrowth was on the other hand promoted, and was retained over longer time in culture. Furthermore, the non-glial-associated nerve fibers were found to target the fetal frontal cortex. Different developmental stages were shown to promote and affect the outgrowths differently. Taken together, these data indicate and state the importance of astrocytes and growth factors for neuronal nerve fiber formation and guidance. It also stresses the importance of fetal donor age at the time for transplantation. The fourth and fifth studies focus on L-DOPA dynamics and utilize in vivo chronoamperometry. In study four, 6-OHDA dopamine-depleted rats were exposed to chronic L-DOPA treatment and then rated as dyskinetic or non-dyskinetic. The electrochemical recordings demonstrated reduced KCl-evoked release in the intact striatum after chronic L-DOPA treatment. Time for maximal dopamine concentration after L-DOPA administration was found to be shorter in dyskinetic animals than in non-dyskinetic animals. The serotonergic nerve fiber content in the striatum was evaluated and brains from dyskinetic animals were found to exhibit significantly higher nerve fiber density compared to non-dyskinetic animals. Furthermore, the mechanisms behind the conversion of L-DOPA to dopamine in 6-OHDA dopamine-depleted rats were studied. Local administration of L-DOPA in the striatum increased the KCl-evoked dopamine release in the intact striatum. Acute application of L-DOPA resulted sometimes in a rapid conversion to dopamine, probably without vesicle packaging. This type of direct conversion is presumably occurring in non-neuronal tissue. Furthermore, KCl-evoked dopamine releases were present upon local application of L-DOPA in the dopamine-depleted striatum, suggesting that the conversion to dopamine took place elsewhere, than in dopaminergic nerve fibers. In conclusion, these studies state the importance of astrocytes for neuronal nerve fiber formation and elucidate the complexity of L-DOPA conversion in the brain.
  •  
7.
  • Althini, Susanna (författare)
  • Experimental Studies of BMP Signalling in Neuronal Cells
  • 2003
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The developing nervous system depends largely on extracellular cues to shape its complex network of neurons. Classically, neurotrophins are known to be important mediators in this process. More recently, Bone Morphogenetic Proteins (BMPs), belonging to the Transforming Growth Factor beta (TGFβ) superfamily of secreted cytokines, have been shown to exert a wide range of effects, such as cellular growth, differentiation, survival and apoptosis, both in the developing and adult nervous system. They signal via serine/threonine kinase receptor essentially to the Smad pathway, which carries the signal to the nucleus where the transcription of target genes is regulated.This thesis investigates the functions of BMPs in the nervous system, using a set of different models. Firstly, a targeted deletion of GDF10 (BMP3b) in the mouse was established to evaluate the role of this growth/differentiation factor in the hippocampal formation, a brain area known to be involved in memory processing. Other members of the TGFβ superfamily likely compensate for the lack of GDF10, since no detectable alterations in hippocampal function or gene transcription profile have been found. Secondly, a mouse model was set up, with the aim to study impaired BMP-signalling in dopaminergic neurons. The tyrosine hydroxylase (TH) locus was used to drive the expression of dominant negative BMP receptors by means of bicistronic mRNAs. TH is the rate-limiting enzyme in the biosynthesis of catecholamine and the mice described, show a graded decrease of TH-activity resulting in severe to mild dopamine deficiency. The contribution of the dominant negative BMP receptors to the phenotype is however secondary to the apparent TH hypomorphism. The final theme of this thesis is the potentiating effects of BMPs on neurotrophin-induced neurite outgrowth as studied in explanted ganglia from chick embryos and in the rat phaeochromocytoma cell line PC12. A number of pharmacological inhibitors of intracellular signalling kinases were applied to the cultures in order to reveal the contribution of different pathways to the enhanced neurite outgrowth. We made the unexpected finding that inhibition of MEK signalling mimicked the potentiating effects of BMP stimulation in the chick system. The underlying mechanisms for the synergistic effects, however, are still an enigma.
  •  
8.
  • Andersson, Mikael, et al. (författare)
  • Subchronic haloperidol increases CB(1) receptor binding and G protein coupling in discrete regions of the basal ganglia.
  • 2005
  • Ingår i: Journal of Neuroscience Research. - : Wiley. - 0360-4012 .- 1097-4547. ; 82:2, s. 264-72
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study was designed to test whether chronic neuroleptic treatment, which is known to alter both expression and density of dopamine D(2) receptors in striatal regions, has effects upon function and binding level of the cannabinoid CB(1) receptor in the basal ganglia by using receptor autoradiography. As predicted, subchronic haloperidol treatment resulted in increased binding of (3)H-raclopride and quinpirole-induced guanosine 5'-O-(gamma-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) in the striatum when compared to that measured in control animals. This increased D(2) receptor binding and function after 3 days washout was normalized after a 2-week washout period. Effect of haloperidol treatment was studied for CB(1) receptor binding and CP55,940-stimulated [(35)S]GTPgammaS in the striatum, globus pallidus, and substantia nigra. (3)[H]CP55,940 binding levels were found in rank order from highest to lowest in substantia nigra > globus pallidus > striatum. Furthermore, subchronic haloperidol treatment resulted in elevated binding levels of (3)[H]CP55,940 in the striatum and the substantia nigra and CB(1) receptor-stimulated [(35)S]GTPgammaS bindings in the substantia nigra after 3 days washout. These increased binding levels were normalized at 1-4 weeks after termination of haloperidol treatment. Haloperidol treatment had no significant effect on CB(1) receptor or [(35)S]GTPgammaS binding levels in globus pallidus. The results help to elucidate the underlying biochemical mechanism of CB(1) receptor supersensitivity after haloperidol treatment.
  •  
9.
  • Andersson, Tommy, et al. (författare)
  • 2020 års Ekonomipris till Paul Milgrom och Robert Wilson
  • 2020
  • Ingår i: Ekonomisk Debatt. - : Nationalekonomiska Föreningen. - 0345-2646. ; 48:8, s. 5-12
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • Kungl. Vetenskapsakademien har beslutat dela ut årets Ekonomipris till Paul Milgrom och Robert Wilson, båda från Stanford University, USA, för ”förbättringar av auktionsteorin och uppfinningar av nya auktionsformat”. Årets pristagare har i sin forskning sammanfört teori och praktik, till nytta för enskilda individer, företag och samhällen världen över.
  •  
10.
  • Andersson, Tommy, et al. (författare)
  • 2022 års ekonomipris till Ben Bernanke, Douglas Diamond och Philip Dybvig
  • 2022
  • Ingår i: Ekonomisk Debatt. - : Nationalekonomiska Föreningen. - 0345-2646 .- 2002-4231. ; 50:8/2022
  • Forskningsöversikt (övrigt vetenskapligt/konstnärligt)abstract
    • Kungl. Vetenskapsakademien har beslutat dela ut årets ekonomipris till Ben Bernanke (verksam vid The Brookings Institution), Douglas Diamond (verksam vid University of Chicago) och Philip Dybvig (verksam vid Washington University, St. Louis) ”för forskning om banker och finanskriser”. Med hjälp av forskningsinsikterna från årets ekonomipristagare har senare finanskriser kunnat hanteras bättre.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 89
Typ av publikation
tidskriftsartikel (50)
konferensbidrag (19)
annan publikation (7)
doktorsavhandling (7)
samlingsverk (redaktörskap) (2)
forskningsöversikt (2)
visa fler...
rapport (1)
bok (1)
visa färre...
Typ av innehåll
refereegranskat (64)
övrigt vetenskapligt/konstnärligt (20)
populärvet., debatt m.m. (5)
Författare/redaktör
Strömberg, Ingrid (39)
af Bjerkén, Sara (11)
Gerhardt, Greg A. (8)
Strömberg, Ulf (8)
Karlsson, Thomas (8)
Skerfving, Staffan (8)
visa fler...
Rittner, Ralf (8)
Lindberg, Per (8)
Strömberg, Ingrid, P ... (7)
Anderzén, Ingrid (7)
Orädd, Greger (5)
Marschinke, Franzisk ... (5)
Nevalainen, Nina (5)
Strömberg, Anna (4)
Lundblad, Martin (4)
Pomerleau, Francois (4)
Virel, Ana (4)
Björk, Gunnela (2)
Larsson, Anders (2)
Andersson, Eva (2)
Strömberg, Per (2)
Helleday, Thomas (2)
Andersson, Tommy (2)
Marsal, Karel (2)
Landegren, Ulf (2)
Kamali-Moghaddam, Ma ... (2)
Fellman, Vineta (2)
Andersson, Jonas (2)
Rasmussen, Birgit H (2)
Karalija, Nina, 1984 ... (2)
Wallin, Lars (2)
Kristensson Hallströ ... (2)
Loseva, Olga (2)
Ewald, Uwe (2)
Nordén Lindeberg, So ... (2)
Rydström, Annie (2)
Lindberg, Eva (2)
Laurini, Ricardo (2)
Löf, Liza (2)
Simonsson, Bengt (2)
Wennergren, Margaret ... (2)
Norman, Mikael (2)
Ellingsen, Tore (2)
Lagercrantz, Hugo (2)
Axelsson, Hanna (2)
Källén, Karin (2)
Jeppsson, Fredrik (2)
Westgren, Magnus (2)
Wittung-Stafshede, P ... (2)
Stenmark, Pål (2)
visa färre...
Lärosäte
Umeå universitet (48)
Lunds universitet (15)
Uppsala universitet (13)
Karolinska Institutet (11)
Högskolan i Gävle (7)
Chalmers tekniska högskola (6)
visa fler...
Örebro universitet (5)
Linköpings universitet (5)
Göteborgs universitet (4)
Stockholms universitet (3)
RISE (3)
Högskolan Kristianstad (2)
Handelshögskolan i Stockholm (2)
Högskolan i Halmstad (1)
IVL Svenska Miljöinstitutet (1)
Röda Korsets Högskola (1)
visa färre...
Språk
Engelska (80)
Svenska (9)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (52)
Naturvetenskap (9)
Teknik (6)
Humaniora (6)
Samhällsvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy