SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Strandberg Anna Dr 1984 ) "

Sökning: WFRF:(Strandberg Anna Dr 1984 )

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bozaghian, Marjan, et al. (författare)
  • Does Mechanical Screening of Contaminated Forest Fuels Improve Ash Chemistry for Thermal Conversion?
  • 2020
  • Ingår i: Energy and Fuels. - : American Chemical Society (ACS). - 0887-0624 .- 1520-5029. ; 34, s. 16294-16301
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of mechanical screening of severely contaminated forest fuel chips was investigated, focusing on main ashforming elements and slagging tendency and other properties with relevance for thermal conversion. In this study, screening operations were performed according to practice on an industrial scale by combining a star screen and a supplementary windshifter in six different settings and combinations. Mechanical screening reduced the amount of ash and fine particles in the accept fraction. However, the mass losses for the different screening operations were substantial (20−50 wt %). Fuel analyses of the non-screened and the screened fuels showed that the most significant screening effect was a reduction of Si and Al, indicating an effective removal of sand and soil contaminations. However, the tested fuel’s main ash-forming element’s relative concentration did not indicate any improved combustion characteristics and ash-melting behavior. Samples of the accept fractions and non-screened material were combusted in a single-pellet thermogravimetric reactor, and the resulting ashes’ morphology and elemental composition were analyzed by scanning electron microscopy−energy dispersive X-ray spectrometry and the crystalline phases by powder X-ray diffraction. Results from both these analyses confirmed that screening operations had no, or minor, effects on the fuels’ ash chemistry and slagging tendencies, i.e., the fuels’ proneness to ash melting was not improved. However, the reduction of ash and fine particles can reduce slagging and other operational problems in smaller and more sensitive combustion units.
  •  
3.
  • Nordin, Andreas, et al. (författare)
  • Co-Combustion of Municipal Sewage Sludge and Biomass in a Grate Fired Boiler for Phosphorus Recovery in Bottom Ash
  • 2020
  • Ingår i: Energies. - : MDPI. - 1996-1073. ; 13:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphorus has been identified as a critical element by the European Union and recycling efforts are increasingly common. An important phosphorus-containing waste stream for recycling is municipal sewage sludge (MSS), which is used directly as fertilizer to farmland. However, it contains pollutants such as heavy metals, pharmaceutical residues, polychlorinated bi-phenyls (PCBs) and nano-plastics. The interest in combustion of MSS is continuously growing, as it both reduces the volume as well as destroys the organic materials and could separate certain heavy metals from the produced ashes. This results in ashes with a potential for either direct use as fertilizer or as a suitable feedstock for upgrading processes. The aim of this study was to investigate co-combustion of MSS and biomass to create a phosphorus-rich bottom ash with a low heavy metal content. A laboratory-scale fixed-bed reactor in addition to an 8 MWth grate-boiler was used for the experimental work. The concentration of phosphorus and selected heavy metals in the bottom ashes were compared to European Union regulation on fertilizers, ash application to Swedish forests and Swedish regulations on sewage sludge application to farmland. Element concentrations were determined by ICP-AES complemented by analysis of spatial distribution with SEM-EDS and XRD analysis to determine crystalline compounds. The results show that most of the phosphorus was retained in the bottom ash, corresponding to 9-16 wt.% P2O5, while the concentration of cadmium, mercury, lead and zinc was below the limits of the regulations. However, copper, chromium and nickel concentrations exceeded these standards.
  •  
4.
  • Skoglund, Nils, et al. (författare)
  • Characterisation of ash particles from co-combustion of bark and sludges from pulp and paper industry
  • 2023
  • Ingår i: Fuel. - : Elsevier. - 0016-2361 .- 1873-7153. ; 340
  • Tidskriftsartikel (refereegranskat)abstract
    • Recycling phosphorus from waste streams for fertilization purposes could contribute to a sustainable society. The production in the pulp and paper industry results in several waste streams, among others nutrient-rich sludges in different forms. This study presents a detailed chemical and 3D characterization of ash from co-combustion of bark and two types of sludges from a paper mill; mixed sludge and biosludge. The combustion performance was investigated for these experiments and advanced analysis methods were used to characterise the ashes to correlate chemical and physical properties relevant for nutrient recycling. The elemental composition was determined by energy-dispersive X-ray spectroscopy; dominating crystalline phases by X-ray diffraction; and morphology, porosity, pore size distribution and active surface area of the slag were analysed with synchrotron-based X-ray micro-tomography and image analysis. Slag was formed in all combustion experiments to a large extent with increasing amounts with a higher proportion of sludge. Nutrient amounts indicate that slag particles from co-combustion of both biosludge and mixed sludge can be useful either as a soil improvement directly or for recovery processes. Slag from combustion of 30 wt% biosludge and 70 wt% bark contained the highest amount of phosphorus, 9 at% on a C and O free basis. Evaluation of tomography data showed that discrete and open pores could be distinguished on a micrometre scale. The porosity of the slag varied between the replicates and fuel mixtures, on average between 17 and 23 vol% for the bark and sludge mixtures. Open pore volume displayed large variations, on average 39–56 vol% of the pores were open pores connected to the surrounding volume. For all samples, 90 % of the pores were small, with an equivalent diameter under 30 μm, but the largest pore volume (80–90 %) consists of pores with an equivalent diameter over 75 μm. In soils, pores with a minimum equivalent diameter over 30 μm generally transmit water and the smaller pores store water. The slag particles have relatively thick walls, with few pore openings to the surroundings, indicating that the slag needs to be pre-treated by milling or crushing before application in the soil.
  •  
5.
  •  
6.
  • Strandberg, Anna, Dr, 1984-, et al. (författare)
  • AI-assisted deep learning segmentation and quantitative analysis of X-ray microtomography data from biomass ashes
  • 2024
  • Ingår i: MethodsX. - : Elsevier. - 1258-780X .- 2215-0161. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray microtomography is a non-destructive method that allows for detailed three-dimensional visualisation of the internal microstructure of materials. In the context of using phosphorus-rich residual streams in combustion for further ash recycling, physical properties of ash particles can play a crucial role in ensuring effective nutrient return and sustainable practices. In previous work, parameters such as surface area, porosity, and pore size distribution, were determined for ash particles. However, the image analysis involved binary segmentation followed by time-consuming manual corrections. The current work presents a method to implement deep learning segmentation and an approach for quantitative analysis of morphology, porosity, and internal microstructure. Deep learning segmentation was applied to microtomography data. The model, with U-Net architecture, was trained using manual input and algorithm prediction. The trained and validated deep learning model could accurately segment material (ash) and air (pores and background) for these heterogeneous particles.Quantitative analysis was performed for the segmented data on porosity, open pore volume, pore size distribution, sphericity, particle wall thickness and specific surface area.Material features with similar intensities but different patterns, intensity variations in the background and artefacts could not be separated by manual segmentation – this challenge was resolved using the deep learning approach.
  •  
7.
  • Strandberg, Anna, Dr, 1984-, et al. (författare)
  • Ash Transformation During Single-Pellet Combustion of a Silicon-Poor Woody Biomass
  • 2019
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 0887-0624 .- 1520-5029. ; 33:8, s. 7770-7777
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass fuels with calcium and potassium as the main ash-forming elements are expected to form ash consisting mainly of carbonates and oxides. These carbonates are stable in a rather narrow temperature range, which in turn depends on the Ca/K ratio, as well as on the surrounding atmosphere. The objective of the present study was to perform a detailed characterization of ash formation and transformation at a single-pellet level during combustion of silicon-poor woody biomass fuel. Combustion tests were performed with poplar in a single-pellet isothermal thermogravimetric analyzer operated at different temperatures and atmospheres and quenched at different stages of fuel conversion. The char and residual ashes were characterized for morphology and chemical composition. The focus of the experimental work in this study was on the time (conversion) resolved ash formation and transformations at the late part of the char combustion phase. Thermodynamic equilibrium calculations were used both to design the experiments and to support the interpretation of experimental results. It was concluded that carbonates were, in general, stable at low temperatures (here, 600–800 °C), identified as CaCO3, K2Ca2(CO3)3, and K2Ca(CO3)2, and decomposed at higher temperatures. In addition, a combined carbonate and phosphate phase in the form of carbonate apatite, Ca9.9(PO4)6(CO3)0.9, was also found, mainly at lower temperatures. However, for char/ash samples quenched before full conversion, CaCO3 was still found at temperatures higher than expected, possibly explained by the stabilizing effect of locally higher CO2 partial pressure within the burning fuel particles. Thus, the results of the present study provide new insights into conversion-based ash formation and transformation in a burning fuel particle with relevance for combustion of Si-poor woody biomass fuels.
  •  
8.
  • Strandberg, Anna, Dr, 1984-, et al. (författare)
  • Char conversion characterized by synchrotron based X-ray micro-tomography and SEM-EDS analysis
  • 2017
  • Ingår i: European Biomass Conference and Exhibition Proceedings. - : ETA-Florence Renewable Energies. - 2282-5819. ; , s. 485-491
  • Konferensbidrag (refereegranskat)abstract
    • Fuel and ash properties were studied during fuel conversion by careful examination of char samples at different degrees of char oxidation. Two types of lignocellulosic pellets with different compositions of ash forming elements were used: poplar and straw from wheat. The charred pellets were investigated by synchrotron-based X-ray micro-tomography to create 3D images of the development of cracks, internal cavities, and ash layers during conversion. Furthermore, SEM-EDS was used to for detailed chemical and morphological information of the ash layers formed. The pore development during pellet conversion was found to deviate from what has previously been described for the structure of solid wood particles. Large cracks and internal cavities were formed extensively already during devolatilization. For poplar, no mobility of the ash forming elements were observed as the burnout proceeded. Ash layer properties varied between the two fuels: poplar formed a porous, permeable, low density and Ca rich ash, whereas wheat straw ash accumulated on the surface in the form of high density melt that develop into bubbles on the surface. As the conversion proceeded, the ash layer covered more of the active char surface area, but without totally blocking the gas transport.
  •  
9.
  • Strandberg, Anna, Dr, 1984-, et al. (författare)
  • Characterization of porosity and microstructure of phosphorus-rich ash particles with X-ray micro-tomography
  • 2019
  • Konferensbidrag (refereegranskat)abstract
    • A large proportion of the nutrients supplied from forest and agricultural sector are lost today, both through leaching and removing of produced biomass. Sustainable and efficient recycling of macro- and micro nutrients can be done by combustion / co-combustion of residual streams, which makes it possible to utilize for example the phosphorus-bound fraction in the produced ash for further processing and recycling. The porosity of the ash is important for, among other things, leaching and water-retaining ability when returning to the soil. The purpose of the project is to provide detailed knowledge of porosity and internal microstructure of ash particles from combustion of residual biomass streams, by using X-ray based micro-tomography and image analysis. The results provide new insights into how ash porosity and micro structure differs between different ashes, depending on fuel and the choice of conversion process.
  •  
10.
  • Strandberg, Anna, Dr, 1984-, et al. (författare)
  • Morphological characterisation of ash particles from co-combustion of sewage sludge and wheat straw with X-ray microtomography
  • 2021
  • Ingår i: Waste Management. - : Elsevier. - 0956-053X .- 1879-2456. ; 135, s. 30-39
  • Tidskriftsartikel (refereegranskat)abstract
    • Combustion of phosphorus-rich residual streams can produce nutrient-rich ashes and these can be used either in further processing or as materials for direct nutrient recycling. The latter requires knowledge on morphological parameters of such ash particles that may impact plant growth, nutrient availability, and soil physical properties. The present work aims to determine the porosity, pore size, and specific surface area of ash particles, and discuss these properties in light of literature concerning interaction with soil water and plant roots. Bottom ash particles from combustion of sewage sludge and wheat straw and their co-combustion were analysed with X-ray microtomography. Image analysis provided information on morphology, specific surface area, porosity, and pore structure on a micrometre scale resolution. Co-combusting sewage sludge with wheat straw resulted in differences in ash particles' porosity and pore structure compared to combustion of pure fuels. Pure wheat straw ash displayed 62 vol% porosity while there was no apparent difference between 10 wt% or 30 wt% mixtures of sewage sludge, with a porosity of 29–31 vol%. Open pore volume comprise the largest part of the porosity (72–99 vol%) enabling interaction between surrounding pore water and nutrients.Overall, the ash particles display large open volume fractions and thin particle walls which may lead to rapid weathering and extensive interaction with soil water. The particles generally contained pore openings over 200 µm towards the surroundings, which provide opportunities for interaction with microbes and roots from a variety of plant species in addition to nutrient transport by soil water.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy