SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Strauss Jens) "

Sökning: WFRF:(Strauss Jens)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbott, Benjamin W., et al. (författare)
  • We Must Stop Fossil Fuel Emissions to Protect Permafrost Ecosystems
  • 2022
  • Ingår i: Frontiers in Environmental Science. - : Frontiers Media SA. - 2296-665X. ; 10
  • Forskningsöversikt (refereegranskat)abstract
    • Climate change is an existential threat to the vast global permafrost domain. The diverse human cultures, ecological communities, and biogeochemical cycles of this tenth of the planet depend on the persistence of frozen conditions. The complexity, immensity, and remoteness of permafrost ecosystems make it difficult to grasp how quickly things are changing and what can be done about it. Here, we summarize terrestrial and marine changes in the permafrost domain with an eye toward global policy. While many questions remain, we know that continued fossil fuel burning is incompatible with the continued existence of the permafrost domain as we know it. If we fail to protect permafrost ecosystems, the consequences for human rights, biosphere integrity, and global climate will be severe. The policy implications are clear: the faster we reduce human emissions and draw down atmospheric CO2, the more of the permafrost domain we can save. Emissions reduction targets must be strengthened and accompanied by support for local peoples to protect intact ecological communities and natural carbon sinks within the permafrost domain. Some proposed geoengineering interventions such as solar shading, surface albedo modification, and vegetation manipulations are unproven and may exacerbate environmental injustice without providing lasting protection. Conversely, astounding advances in renewable energy have reopened viable pathways to halve human greenhouse gas emissions by 2030 and effectively stop them well before 2050. We call on leaders, corporations, researchers, and citizens everywhere to acknowledge the global importance of the permafrost domain and work towards climate restoration and empowerment of Indigenous and immigrant communities in these regions.
  •  
2.
  • Mishra, Umakant, et al. (författare)
  • Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Large stocks of soil organic carbon (SOC) have accumulated in the Northern Hemisphere permafrost region, but their current amounts and future fate remain uncertain. By analyzing dataset combining >2700 soil profiles with environmental variables in a geospatial framework, we generated spatially explicit estimates of permafrost-region SOC stocks, quantified spatial heterogeneity, and identified key environmental predictors. We estimated that Pg C are stored in the top 3 m of permafrost region soils. The greatest uncertainties occurred in circumpolar toe-slope positions and in flat areas of the Tibetan region. We found that soil wetness index and elevation are the dominant topographic controllers and surface air temperature (circumpolar region) and precipitation (Tibetan region) are significant climatic controllers of SOC stocks. Our results provide first high-resolution geospatial assessment of permafrost region SOC stocks and their relationships with environmental factors, which are crucial for modeling the response of permafrost affected soils to changing climate.
  •  
3.
  • Monhonval, Arthur, et al. (författare)
  • Mineral Element Stocks in the Yedoma Domain : A Novel Method Applied to Ice-Rich Permafrost Regions
  • 2021
  • Ingår i: Frontiers in Earth Science. - : Frontiers Media SA. - 2296-6463. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • With permafrost thaw, significant amounts of organic carbon (OC) previously stored in frozen deposits are unlocked and become potentially available for microbial mineralization. This is particularly the case in ice-rich regions such as the Yedoma domain. Excess ground ice degradation exposes deep sediments and their OC stocks, but also mineral elements, to biogeochemical processes. Interactions of mineral elements and OC play a crucial role for OC stabilization and the fate of OC upon thaw, and thus regulate carbon dioxide and methane emissions. In addition, some mineral elements are limiting nutrients for plant growth or microbial metabolic activity. A large ongoing effort is to quantify OC stocks and their lability in permafrost regions, but the influence of mineral elements on the fate of OC or on biogeochemical nutrient cycles has received less attention and there is an overall lack of mineral element content analyses for permafrost sediments. Here, we combine portable X-ray fluorescence (pXRF) with a bootstrapping technique to provide i) the first large-scale Yedoma domain Mineral Concentrations Assessment (YMCA) dataset, and ii) estimates of mineral element stocks in never thawed (since deposition) ice-rich Yedoma permafrost and previously thawed and partly refrozen Alas deposits. The pXRF method for mineral element quantification is non-destructive and offers a complement to the classical dissolution and measurement by optical emission spectrometry (ICP-OES) in solution. Using this method, mineral element concentrations (Si, Al, Fe, Ca, K, Ti, Mn, Zn, Sr and Zr) were assessed on 1,292 sediment samples from the Yedoma domain with lower analytical effort and lower costs relative to the ICP-OES method. The pXRF measured concentrations were calibrated using alkaline fusion and ICP-OES measurements on a subset of 144 samples (R2 from 0.725 to 0.996). The results highlight that i) the mineral element stock in sediments of the Yedoma domain (1,387,000 km2) is higher for Si, followed by Al, Fe, K, Ca, Ti, Mn, Zr, Sr, and Zn, and that ii) the stock in Al and Fe (598 ± 213 and 288 ± 104 Gt) is in the same order of magnitude as the OC stock (327–466 Gt).
  •  
4.
  • Ogneva, Olga, et al. (författare)
  • Particulate organic matter in the Lena River and its delta : from thepermafrost catchment to the Arctic Ocean
  • 2023
  • Ingår i: Biogeosciences. - 1726-4170 .- 1726-4189. ; 20:7, s. 1423-1441
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapid Arctic warming accelerates permafrost thaw, causing an additional release of terrestrial organic matter (OM) into rivers and, ultimately, after transport via deltas and estuaries, to the Arctic Ocean nearshore. The majority of our understanding of nearshore OM dynamics and fate has been developed from freshwater rivers despite the likely impact of highly dynamic estuarine and deltaic environments on the transformation, storage, and age of OM delivered to coastal waters. Here, we studied particulate organic carbon (POC) dynamics in the Lena River delta and compared them with POC dynamics in the Lena River main stem along a similar to 1600 km long transect from Yakutsk, downstream to the delta. We measured POC, total suspended matter (TSM), and carbon isotopes (delta C-13 and Delta C-14) in POC to compare riverine and deltaic OM composition and changes in OM source and fate during transport offshore. We found that TSM and POC concentrations decreased by 70% during transit from the main stem to the delta and Arctic Ocean. We found deltaic POC to be strongly depleted in C-13 relative to fluvial POC. Dual-carbon (Delta C-14 and delta C-13) isotope mixing model analyses indicated a significant phytoplankton contribution to deltaic POC (similar to 68 +/- 6 %) and suggested an additional input of permafrost-derived OM into deltaic waters (similar to 18 +/- 4% of deltaic POC originates from Pleistocene deposits vs. similar to 5 +/- 4% in the river main stem). Despite the lower concentration of POC in the delta than in the main stem (0.41 +/- 0.10 vs. 0.79 +/- 0.30 mg L-1, respectively), the amount of POC derived from Yedoma deposits in deltaic waters was almost twice as large as the amount of POC of Yedoma origin in the main stem (0.07 +/- 0.02 and 0.04 +/- 0.02 mg L-1, respectively). We assert that estuarine and deltaic processes require consideration in order to correctly understand OM dynamics throughout Arctic nearshore coastal zones and how these processes may evolve under future climate-driven change.
  •  
5.
  • Pattu, Varsha, et al. (författare)
  • SNARE protein expression and localization in human cytotoxic T lymphocytes.
  • 2012
  • Ingår i: European Journal of Immunology. - : Wiley. - 0014-2980 .- 1521-4141. ; 42:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The major function of cytotoxic T lymphocytes (CTLs) is to eliminate pathogen-infected and tumorigenic cells. This is mediated mainly through the exocytosis of lytic granules (LGs) containing cytotoxic components, such as perforin and granzymes at the immunological synapse (IS). The soluble NSF attachment receptor (SNARE) protein isoforms are well known to be required for vesicle exocytosis in neuronal synapses, but their potential function in CTLs is only partly understood. Here, we examined the expression of SNARE proteins before and after the activation of primary human CD8(+) T cells and determined their co-localization with LGs and CD3 after IS formation with target cells. We found that several key SNARE proteins in neuronal cells were not expressed in CTLs, such as syntaxin1B2 and SNAP-25. Vti1b, Stx8 and Stx16 had the highest degrees of co-localization with LGs while Stx3, Stx4, Stx6, Stx7, Stx8, Stx13, Vti1b, VAMP3 and VAMP4 co-localized with CD3. Our data provide the first complete expression profile and localization of SNAREs in primary human CD8(+) T cells, laying the groundwork for further understanding their potential role in T-cell function.
  •  
6.
  • Petropoulos, Fotios, et al. (författare)
  • Operational Research : methods and applications
  • 2024
  • Ingår i: Journal of the Operational Research Society. - : Taylor & Francis Group. - 0160-5682 .- 1476-9360. ; 75:3, s. 423-617
  • Forskningsöversikt (refereegranskat)abstract
    • Throughout its history, Operational Research has evolved to include methods, models and algorithms that have been applied to a wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first summarises the up-to-date knowledge and provides an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion and used as a point of reference by a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order. The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely hope that advances in OR will play a role towards minimising the pain and suffering caused by this and future catastrophes.
  •  
7.
  • Ray, Nicholas E., et al. (författare)
  • The Role of Coastal Yedoma Deposits and Continental Shelf Sediments in the Arctic Ocean Silicon Cycle
  • 2024
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 38:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The availability of silicon (Si) in the ocean plays an important role in regulating biogeochemical and ecological processes. The Si budget of the Arctic Ocean appears balanced, with inputs equivalent to outputs, though it is unclear how a changing climate might aggravate this balance. In this study, we focus on Si cycling in Arctic coastal areas and continental shelf sediments to better constrain the Arctic Ocean Si budget. We provide the first estimate of amorphous Si (ASi) loading from erosion of coastal Yedoma deposits (30-90 Gmol yr-1), demonstrating comparable rates to particulate Si loading from rivers (10-90 Gmol yr-1). We found a positive relationship between surface sediment ASi and organic matter content on continental shelves. Combining these values with published Arctic shelf sediment properties and burial rates we estimate 70 Gmol Si yr-1 is buried on Arctic continental shelves, equivalent to 4.5% of all Si inputs to the Arctic Ocean. Sediment dissolved Si fluxes increased with distance from river mouths along cruise transects of shelf regions influenced by major rivers in the Laptev and East Siberian seas. On an annual basis, we estimate that Arctic shelf sediments recycle approximately up to twice as much DSi (680 Gmol Si) as is loaded from rivers (340-500 Gmol Si). Coastal erosion loads 30-90 Gmol Si yr-1 to the Arctic Ocean in the form of amorphous siliconContinental shelf sediments in the Arctic Ocean recycle more silicon than is loaded from riversApproximately 4.5% of silicon loaded on the Arctic Ocean is buried in continental shelf sediments
  •  
8.
  • Sanders, Tina, et al. (författare)
  • Seasonal nitrogen fluxes of the Lena River Delta
  • 2022
  • Ingår i: Ambio. - : Springer Science and Business Media LLC. - 0044-7447 .- 1654-7209. ; 51:2, s. 423-438
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic is nutrient limited, particularly by nitrogen, and is impacted by anthropogenic global warming which occurs approximately twice as fast compared to the global average. Arctic warming intensifies thawing of permafrost-affected soils releasing their large organic nitrogen reservoir. This organic nitrogen reaches hydrological systems, is remineralized to reactive inorganic nitrogen, and is transported to the Arctic Ocean via large rivers. We estimate the load of nitrogen supplied from terrestrial sources into the Arctic Ocean by sampling in the Lena River and its Delta. We took water samples along one of the major deltaic channels in winter and summer in 2019 and sampling station in the central delta over a one-year cycle. Additionally, we investigate the potential release of reactive nitrogen, including nitrous oxide from soils in the Delta. We found that the Lena transported nitrogen as dissolved organic nitrogen to the coastal Arctic Ocean and that eroded soils are sources of reactive inorganic nitrogen such as ammonium and nitrate. The Lena and the Deltaic region apparently are considerable sources of nitrogen to nearshore coastal zone. The potential higher availability of inorganic nitrogen might be a source to enhance nitrous oxide emissions from terrestrial and aquatic sources to the atmosphere.
  •  
9.
  • Schuur, Edward A. G., et al. (författare)
  • Permafrost and Climate Change : Carbon Cycle Feedbacks From the Warming Arctic
  • 2022
  • Ingår i: Annual Review Environment and Resources. - : Annual Reviews. - 1543-5938 .- 1545-2050. ; 47, s. 343-371
  • Forskningsöversikt (refereegranskat)abstract
    • Rapid Arctic environmental change affects the entire Earth system as thawing permafrost ecosystems release greenhouse gases to the atmosphere. Understanding how much permafrost carbon will be released, over what time frame, and what the relative emissions of carbon dioxide and methane will be is key for understanding the impact on global climate. In addition, the response of vegetation in a warming climate has the potential to offset at least some of the accelerating feedback to the climate from permafrost carbon. Temperature, organic carbon, and ground ice are key regulators for determining the impact of permafrost ecosystems on the global carbon cycle. Together, these encompass services of permafrost relevant to global society as well as to the people living in the region and help to determine the landscape-level response of this region to a changing climate.
  •  
10.
  • Stimmler, Peter, et al. (författare)
  • Pan-Arctic soil element bioavailability estimations
  • 2023
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 15:3, s. 1059-1075
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic soils store large amounts of organic carbon and other elements, such as amorphous silicon, silicon, calcium, iron, aluminum, and phosphorous. Global warming is projected to be most pronounced in the Arctic, leading to thawing permafrost which, in turn, changes the soil element availability. To project how biogeochemical cycling in Arctic ecosystems will be affected by climate change, there is a need for data on element availability. Here, we analyzed the amorphous silicon (ASi) content as a solid fraction of the soils as well as Mehlich III extractions for the bioavailability of silicon (Si), calcium (Ca), iron (Fe), phosphorus (P), and aluminum (Al) from 574 soil samples from the circumpolar Arctic region. We show large differences in the ASi fraction and in Si, Ca, Fe, Al, and P availability among different lithologies and Arctic regions. We summarize these data in pan-Arctic maps of the ASi fraction and available Si, Ca, Fe, P, and Al concentrations, focusing on the top 100 cm of Arctic soil. Furthermore, we provide element availability values for the organic and mineral layers of the seasonally thawing active layer as well as for the uppermost permafrost layer. Our spatially explicit data on differences in the availability of elements between the different lithological classes and regions now and in the future will improve Arctic Earth system models for estimating current and future carbon and nutrient feedbacks under climate change (, Schaller and Goeckede, 2022).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy