SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Strehl S.) "

Sökning: WFRF:(Strehl S.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Harrison, C. J., et al. (författare)
  • An international study of intrachromosomal amplification of chromosome 21 (iAMP21) : cytogenetic characterization and outcome
  • 2014
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 0887-6924 .- 1476-5551. ; 28:5, s. 1015-1021
  • Tidskriftsartikel (refereegranskat)abstract
    • Intrachromosomal amplification of chromosome 21 (iAMP21) defines a distinct cytogenetic subgroup of childhood B-cell precursor acute lymphoblastic leukaemia (BCP-ALL). To date, fluorescence in situ hybridisation (FISH), with probes specific for the RUNX1 gene, provides the only reliable detection method (five or more RUNX1 signals per cell). Patients with iAMP21 are older (median age 9 years) with a low white cell count. Previously, we demonstrated a high relapse risk when these patients were treated as standard risk. Recent studies have shown improved outcome on intensive therapy. In view of these treatment implications, accurate identification is essential. Here we have studied the cytogenetics and outcome of 530 iAMP21 patients that highlighted the association of specific secondary chromosomal and genetic changes with iAMP21 to assist in diagnosis, including the gain of chromosome X, loss or deletion of chromosome 7, ETV6 and RB1 deletions. These iAMP21 patients when treated as high risk showed the same improved outcome as those in trial-based studies regardless of the backbone chemotherapy regimen given. This study reinforces the importance of intensified treatment to reduce the risk of relapse in iAMP21 patients. This now well-defined patient subgroup should be recognised by World Health Organisation (WHO) as a distinct entity of BCP-ALL.
  •  
4.
  •  
5.
  • de Peppo, G.M., et al. (författare)
  • Human Embryonic Mesodermal Progenitors Highly Resemble Human Mesenchymal Stem Cells and Display High Potential for Tissue Engineering Applications
  • 2010
  • Ingår i: Tissue Engineering. Part A. - : Mary Ann Liebert. - 1937-3341 .- 1937-335X. ; 16:7, s. 2161-2182
  • Tidskriftsartikel (refereegranskat)abstract
    • Adult stem cells, such as human mesenchymal stem cells (hMSCs), show limited proliferative capacity and, after long-term culture, lose their differentiation capacity and are therefore not an optimal cell source for tissue engineering. Human embryonic stem cells (hESCs) constitute an important new resource in this field, but one major drawback is the risk of tumor formation in the recipients. One alternative is to use progenitor cells derived from hESCs which are more lineage restricted but do not form teratomas. We have recently derived a cell line from hESCs denoted human embryonic stem cell-derived mesodermal progenitors (hESMPs) and here, using genome wide microarray analysis, report that the process of hES-MPs derivation results in a significantly altered expression of hESCs characteristic genes to an expression level highly similar to that of hMSCs. However, hES-MPs displayed a significantly higher proliferative capacity and longer telomeres. Interestingly, the hES-MPs also demonstrated a lower expression of HLA class II proteins before and after interferon-γ treatment, indicating that these cells may somewhat be immunoprivileged and potentially used for HLA-incompatible transplantation. The hES-MPs are thus an appealing alternative to hMSCs in tissue engineering applications and stem cell-based therapies for mesodermal tissues.
  •  
6.
  • Karlsson, Camilla, 1977, et al. (författare)
  • Human embryonic stem cell-derived mesenchymal progenitors-Potential in regenerative medicine.
  • 2009
  • Ingår i: Stem cell research. - : Elsevier BV. - 1876-7753 .- 1873-5061. ; 3:1, s. 39-50
  • Tidskriftsartikel (refereegranskat)abstract
    • Tissue engineering and cell therapy require large-scale production of homogeneous populations of lineage-restricted progenitor cells that easily can be induced to differentiate into a specific tissue. We have developed straightforward protocols for the establishment of human embryonic stem (hES) cell-derived mesenchymal progenitor (hES-MP) cell lines. The reproducibility was proven by derivation of multiple hES-MP cell lines from 10 different hES cell lines. To illustrate clinical applicability, a xeno-free hES-MP cell line was also derived. None of the markers characteristic for undifferentiated hES cells were detected in the hES-MP cells. Instead, these cells were highly similar to mesenchymal stem cells with regard to morphology and expression of markers. The safety of hES-MP cells following transplantation was studied in severely combined immunodeficient (SCID) mice. The implanted hES-MP cells gave rise to homogeneous, well-differentiated tissues exclusively of mesenchymal origin and no teratoma formation was observed. These cells further have the potential to differentiate toward the osteogenic, adipogenic, and chondrogenic lineages in vitro. The possibility of easily and reproducibly generating highly expandable hES-MP cell lines from well-characterized hES cell lines with differentiation potential into several mesodermal tissues entails an enormous potential for the field of regenerative medicine.
  •  
7.
  • Moll, HP, et al. (författare)
  • A Mouse Model to Assess STAT3 and STAT5A/B Combined Inhibition in Health and Disease Conditions
  • 2019
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 11:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetically-engineered mouse models (GEMMs) lacking diseased-associated gene(s) globally or in a tissue-specific manner represent an attractive tool with which to assess the efficacy and toxicity of targeted pharmacological inhibitors. Stat3 and Stat5a/b transcription factors have been implicated in several pathophysiological conditions, and pharmacological inhibition of both transcription factors has been proposed to treat certain diseases, such as malignancies. To model combined inhibition of Stat3 and Stat5a/b we have developed a GEMM harboring a flox Stat3-Stat5a/b allele (Stat5/3loxP/loxP mice) and generated mice lacking Stat3 and Stat5a/b in hepatocytes (Stat5/3Δhep/Δhep). Stat5/3Δhep/Δhep mice exhibited a marked reduction of STAT3, STAT5A and STAT5B proteins in the liver and developed steatosis, a phenotype that resembles mice lacking Stat5a/b in hepatocytes. In addition, embryonic deletion of Stat3 and Stat5a/b (Stat5/3Δ/Δ mice) resulted in lethality, similar to Stat3Δ/Δ mice. This data illustrates that Stat5/3loxP/loxP mice are functional and can be used as a valuable tool to model the combined inhibition of Stat3 and Stat5a/b in tumorigenesis and other diseases.
  •  
8.
  • Sjögren-Jansson, Eva, et al. (författare)
  • Large-scale propagation of four undifferentiated human embryonic stem cell lines in a feeder-free culture system.
  • 2005
  • Ingår i: Developmental dynamics : an official publication of the American Association of Anatomists. - : Wiley. - 1058-8388. ; 233:4, s. 1304-14
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe an improved and more robust protocol for transfer and subsequent propagation of human embryonic stem cells under feeder-free conditions. The results show that mechanical dissociation for transfer of the human embryonic stem cells to Matrigel resulted in highest survival rates. For passage of the cultures on the other hand, enzymatic dissociation was found to be most efficient. In addition, this method reduces the time, work, and skills needed for propagation of the human embryonic stem cells. With the present protocol, the human embryonic stem cells have been cultured under feeder-free conditions for up to 35 passages while maintaining a normal karyotype, stable proliferation rate, and high telomerase activity. Furthermore, the feeder-free human embryonic stem cell cultures express the transcription factor Oct-4, alkaline phosphatase, and cell surface markers SSEA-3, SSEA-4, Tra 1-60, Tra 1-81, and formed teratomas in severe combined immunodeficient mice. This method provides distinct advantages compared with previous protocols and make propagation of human embryonic stem cells less laborious and more efficient.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy