SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Strobel Darrell) "

Sökning: WFRF:(Strobel Darrell)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blöcker, Aljona, et al. (författare)
  • MHD Modeling of the Plasma Interaction With Io's Asymmetric Atmosphere
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : Blackwell Publishing. - 2169-9380 .- 2169-9402. ; 123:11, s. 9286-9311
  • Tidskriftsartikel (refereegranskat)abstract
    • Io's atmosphere, with an average equatorial column density of >= 10(20) m(-2), exhibits significant density variations with latitude and longitude. We apply a 3-D magnetohydrodynamic model to investigate the effects of atmospheric asymmetries, both locally from volcanic plumes and globally, on the plasma and magnetic field environment of Io. The model takes into account collisions between ions and neutrals, plasma production and loss due to electron impact ionization and dissociative recombination, and the ionospheric Hall effect. Our simulation results show that volcanic plumes influence the plasma interaction locally, generating Alfven winglets within Io's global Alfven wing. Signals from individual plumes can however barely be probed by magnetic field measurements during spacecraft flybys at Io. In contrast, the surface number density, scale height, the longitudinal and latitudinal variations of the global atmosphere are crucial factors for modeling and understanding magnetic field and plasma perturbations. Comparing our model results with the magnetic field data from the 124 and 127 flybys of the Galileo spacecraft, we find that the measured perturbations can be primarily caused by the plasma interaction with the longitudinally asymmetric atmosphere. This implies that a significant magnetic induction signal from a partially molten magma ocean is not necessarily required to explain the Galileo magnetometer data.
  •  
2.
  • de Pater, Imke, et al. (författare)
  • An Energetic Eruption With Associated SO 1.707 Micron Emissions at Io's Kanehekili Fluctus and a Brightening Event at Loki Patera Observed by JWST
  • 2023
  • Ingår i: Journal of Geophysical Research - Planets. - : American Geophysical Union (AGU). - 2169-9097 .- 2169-9100. ; 128:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We observed Io with the James Webb Space Telescope (JWST) while the satellite was in eclipse, and detected thermal emission from several volcanoes. The data were taken as part of our JWST-ERS program #1373 on 15 November 2022. Kanehekili Fluctus was exceptionally bright, and Loki Patera had most likely entered a new brightening phase. Spectra were taken with NIRSpec/IFU at a resolving power R ≈ 2,700 between 1.65 and 5.3 µm. The spectra were matched by a combination of blackbody curves that showed that the highest temperature, ∼1,200 K, for Kanehekili Fluctus originated from an area ∼0.25 km2 in size, and for Loki Patera this high temperature was confined to an area of ∼0.06 km2. Lower temperatures, down to 300 K, cover areas of ∼2,000 km2 for Kanehekili Fluctus, and ∼5,000 km2 for Loki Patera. We further detected the a1Δ ⇒ X3Σ− 1.707 µm rovibronic forbidden SO emission band complex over the southern hemisphere, which peaked at the location of Kanehekili Fluctus. This is the first time this emission has been seen above an active volcano, and suggests that the origin of such emissions is ejection of SO molecules directly from the vent in an excited state, after having been equilibrated at temperatures of ∼1,500 K below the surface, as was previously hypothesized.
  •  
3.
  • Giono, Gabriel, et al. (författare)
  • An Analysis of the Statistics and Systematics of Limb Anomaly Detections in HST/STIS Transit Images of Europa
  • 2020
  • Ingår i: Astronomical Journal. - : IOP PUBLISHING LTD. - 0004-6256 .- 1538-3881. ; 159:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Several recent studies derived the existence of plumes on Jupiter's moon Europa. The only technique that provided multiple detections is the far-ultraviolet imaging observations of Europa in transit of Jupiter taken by the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST). In this study, we reanalyze the three HST/STIS transit images in which Sparks et al. identified limb anomalies as evidence for Europa's plume activity. After reproducing the results of Sparks et al., we find that positive outliers are similarly present in the images as the negative outliers that were attributed to plume absorption. A physical explanation for the positive outliers is missing. We then investigate the systematic uncertainties and statistics in the images and identify two factors that are crucial when searching for anomalies around the limb. One factor is the alignment between the actual and assumed locations of Europa on the detector. A misalignment introduces distorted statistics, most strongly affecting the limb above the darker trailing hemisphere where the plumes were detected. The second factor is a discrepancy between the observation and the model used for comparison, adding uncertainty in the statistics. When accounting for these two factors, the limb minima (and maxima) are consistent with random statistical occurrence in a sample size given by the number of pixels in the analyzed limb region. The plume candidate features in the three analyzed images can be explained by purely statistical fluctuations and do not provide evidence for absorption by plumes.
  •  
4.
  • Musacchio, Fabrizio, et al. (författare)
  • Morphology of Ganymede's FUV auroral ovals
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:3, s. 2855-2876
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the morphology of Ganymede's FUV aurora by analyzing spectral images obtained over the past two decades by the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. The observations cover the eastern and western elongation as well as various magnetic latitudes of Ganymede within the Jovian plasma sheet. We find both asymmetries in the spatial distribution of auroral brightness on the observed moon disk and temporal variation correlated to Ganymede's changing magnetic latitude. The total disk brightness is on average 1.42 +/- 0.07 times brighter on the leading side (95.4 +/- 2.1R) than on the trailing side (67.2 +/- 2.9R). The brightness ratio of the sub-Jovian hemisphere to the anti-Jovian hemisphere is 1.81 +/- 0.06 on the leading side and 1.41 +/- 0.14 on the trailing side, respectively. Inside the Jovian current sheet, the brightness of the auroral ovals increases by a factor of 1.45 +/- 0.02 on the leading side and decreases by a factor of 0.80 +/- 0.02 on the trailing side. At the current sheet center, the auroral ovals shift 4.1 degrees +/- 0.7 degrees latitude toward Ganymede's planetographic equator on the leading side and 2.9 degrees +/- 1.5 degrees toward the poles on the trailing side. Both effects, the variation of brightness and the movement of the ovals are correlated to a stronger interaction of Jupiter's magnetospheric plasma with Ganymede's minimagnetosphere inside the current sheet. Finally, we calculate the latitudinal difference of the northern and southern ovals from Ganymede's magnetic equator. The result suggests a farther westward orientation of Ganymede's dipole magnetic moment at approximately 47 degrees + 58 degrees/-43 degrees west longitude compared to previous estimates.
  •  
5.
  • Rodriguez, Sébastien, et al. (författare)
  • Science goals and new mission concepts for future exploration of Titan's atmosphere, geology and habitability : titan POlar scout/orbitEr and in situ lake lander and DrONe explorer (POSEIDON)
  • 2022
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 54:2-3, s. 911-973
  • Tidskriftsartikel (refereegranskat)abstract
    • In response to ESA’s “Voyage 2050” announcement of opportunity, we propose an ambitious L-class mission to explore one of the most exciting bodies in the Solar System, Saturn’s largest moon Titan. Titan, a “world with two oceans”, is an organic-rich body with interior-surface-atmosphere interactions that are comparable in complexity to the Earth. Titan is also one of the few places in the Solar System with habitability potential. Titan’s remarkable nature was only partly revealed by the Cassini-Huygens mission and still holds mysteries requiring a complete exploration using a variety of vehicles and instruments. The proposed mission concept POSEIDON (Titan POlar Scout/orbitEr and In situ lake lander DrONe explorer) would perform joint orbital and in situ investigations of Titan. It is designed to build on and exceed the scope and scientific/technological accomplishments of Cassini-Huygens, exploring Titan in ways that were not previously possible, in particular through full close-up and in situ coverage over long periods of time. In the proposed mission architecture, POSEIDON consists of two major elements: a spacecraft with a large set of instruments that would orbit Titan, preferably in a low-eccentricity polar orbit, and a suite of in situ investigation components, i.e. a lake lander, a “heavy” drone (possibly amphibious) and/or a fleet of mini-drones, dedicated to the exploration of the polar regions. The ideal arrival time at Titan would be slightly before the next northern Spring equinox (2039), as equinoxes are the most active periods to monitor still largely unknown atmospheric and surface seasonal changes. The exploration of Titan’s northern latitudes with an orbiter and in situ element(s) would be highly complementary in terms of timing (with possible mission timing overlap), locations, and science goals with the upcoming NASA New Frontiers Dragonfly mission that will provide in situ exploration of Titan’s equatorial regions, in the mid-2030s. 
  •  
6.
  • Roth, Lorenz, et al. (författare)
  • A phenomenological model of Io’s UV aurora based on HST/STIS observations
  • 2014
  • Ingår i: Icarus. - : Elsevier. - 0019-1035 .- 1090-2643. ; 228, s. 386-406
  • Tidskriftsartikel (refereegranskat)abstract
    • We have carried out a comprehensive analysis of a large set of spatially resolved observations of Io's OI 1304. Å, OI] 1356. Å, SI 1479. Å and SI] 1900. Å aurora taken by the Space Telescope Imaging Spectrograph (STIS) of the Hubble Space Telescope (HST) between 1997 and 2001. We find that the variability of the observed morphologies can be solely explained by the changes of the plasma and magnetic field environment of the Io torus and by the viewing perspective. The variations in brightness are strongly correlated with the periodic variations of the ambient electron density. Based on these findings we develop a phenomenological model for the spatial distribution of the oxygen and sulfur emissions in Io's vicinity. Taking into account Io's position with respect to the plasma torus, the orientation of Jupiter's magnetic field and the viewing perspective of the observation, the model calculates the auroral morphology and brightness. By fitting the model parameters to the observations we find that the model is able to reproduce the main features in all images obtained over a period of five years with one parameter set for each emission multiplet. The spatial distribution of the OI] 1356. Å, OI 1304. Å, SI 1479. Å, and SI] 1900. Å multiplets are shown to be very similar. In contrast to previous investigations, the model results reveal that the majority of the radiation from the bound atmosphere is emitted within 100. km above the surface. The equatorial aurora spots extend far into the wake region explaining observed features in the downstream region. The relative brightness of two the equatorial spots is best explained by our model if the emission on the day-side flank of Io is higher by a factor of ~1.5 with respect to the nightside flank. The measured brightness during an observation in eclipse is significantly lower than expected from the fitted model. The day-night asymmetry and the brightness decrease in eclipse support the idea of a wide collapse of Io's atmosphere in shadow. Since our phenomenological aurora model is able to reproduce the main features of the observed morphology by taking into account the variations of the magnetospheric parameters, it can be applied to predict the emission for future UV aurora observations for a given time and position of the observer. 
  •  
7.
  • Roth, Lorenz, et al. (författare)
  • An attempt to detect transient changes in Io's SO2 and NaCl atmosphere
  • 2020
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 350
  • Tidskriftsartikel (refereegranskat)abstract
    • Io's atmosphere is predominately SO2 that is sustained by a combination of volcanic outgassing and sublimation. The loss from the atmosphere is the main mass source for Jupiter's large magnetosphere. Numerous previous studies attributed various transient phenomena in Io's environment and Jupiter's magnetosphere to a sudden change in the mass loss from the atmosphere supposedly triggered by a change in volcanic activity. Since the gas in volcanic plumes does not escape directly, such causal correlation would require a transient volcano-induced change in atmospheric abundance, which has never been observed so far. Here we report four observations of atmospheric SO2 and NaCl from the same hemisphere of Io, obtained with the IRAM NOEMA interferometer on 11 December 2016, 14 March, 6 and 29 April 2017. These observations are compared to measurements of volcanic hot spots and Io's neutral and plasma environment. We find a stable NaCl column density in Io's atmosphere on the four dates. The SO2 column density derived for December 2016 is about 30% lower compared to the SO2 column density found in the period of March to April 2017. This increase in SO2 from December 2016 to March 2017 might be related to increasing volcanic activity observed at several sites in spring 2017, but the stability of the volcanic trace gas NaCl and resulting decrease in NaCl/SO2 ratio do not support this interpretation. Observed dimmings in both the sulfur ion torus and Na neutral cloud suggest rather a decrease in mass loading in the period of increasing SO2 abundance. The dimming Na brightness and stable atmospheric NaCl furthermore dispute an earlier suggested positive correlation of the sodium cloud and the hot spot activity at Loki Patara, which considerably increased in this period. The environment of Io overall appears to be in a rather quiescent state, preventing further conclusions. Only Jupiter's aurora morphology underwent several short-term changes, which are apparently unrelated to Io's quiescent environment or the relatively stable atmosphere.
  •  
8.
  • Roth, Lorenz, et al. (författare)
  • Constraints on Io's interior from auroral spot oscillations
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 122:2, s. 1903-1927
  • Tidskriftsartikel (refereegranskat)abstract
    • The morphology of Io's aurora is dominated by bright spots near the equator that oscillate up and down in approximate correlation with the oscillating orientation of the Jovian magnetospheric field. Analyzing Hubble Space Telescope images, we find that the auroral spots oscillate in phase with the time-variable Jovian magnetic field at Io and that the amplitude of the spot oscillations is reduced by 15% (+/- 5%) with respect to the amplitude of the magnetic field oscillation. We investigate the effects of Io's plasma interaction and magnetic induction in the moon's interior on the magnetic field topology and the aurora oscillations using a magnetohydrodynamic (MHD) simulation and an analytical induction model. The results from the MHD simulation suggest that the plasma interaction has minor effects on the oscillations, while the magnetic induction generally reduces magnetic field oscillations near the surface. However, the analytical model shows that induction in any near-surface layer for which the skin depth is larger than the thickness-like a conductive magma ocean-would induce a phase shift, in conflict with the observations. Under the assumption that the spot oscillations represent the magnetic field oscillation, we constrain the conductance of a near-surface layer to 1 x 10(3) S or lower. A magma ocean with conductances of 10(4) S or higher as derived from Galileo magnetometer measurements would cause overly strong attenuation of the amplitude in addition to the irreconcilable phase shift. The observed weakly attenuated, in-phase spot oscillation is consistent with induction in a deep, highly conductive layer like Io's metallic core.
  •  
9.
  • Roth, Lorenz, et al. (författare)
  • DETECTION OF A HYDROGEN CORONA IN HST Ly alpha IMAGES OF EUROPA IN TRANSIT OF JUPITER
  • 2017
  • Ingår i: Astronomical Journal. - : Institute of Physics (IOP). - 0004-6256 .- 1538-3881. ; 153:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report far-ultraviolet observations of Europa in transit of Jupiter obtained with the Space Telescope Imaging Spectrograph of the Hubble Space Telescope on six occasions between 2014 December and 2015 March. Absorption of Jupiter's bright hydrogen Ly alpha dayglow is detected in a region several moon radii above the limb in all observations. The observed extended absorption provides the first detection of an atomic hydrogen corona around Europa. Molecular constituents in Europa's global sputtered atmosphere are shown to be optically thin to Lya. The observations are consistent with a radially escaping H corona with maximum densities at the surface in the range of (1.5-2.2) x 10(3) cm(-3), confirming the abundances predicted by Monte Carlo simulations. In addition, we search for anomalies around the limb of Europa from absorption by localized high H2O abundances from active plumes. No significant local absorption features are detected. We find that an H2O plume with line-of-sight column density in the order of 10(16) cm(-2), as inferred by Roth et al. would not be detectable based on the statistical fluctuations of the transit measurements, and hence is not excluded or further constrained. The presence of plumes with line-of-sight column densities of >2 x 10(17) cm(-2) can be excluded at a 3-sigma level during five of our six observations.
  •  
10.
  • Roth, Lorenz, et al. (författare)
  • Orbital apocenter is not a sufficient condition for HST/STIS detection of Europa's water vapor aurora
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 111:48, s. E5123-E5132
  • Tidskriftsartikel (refereegranskat)abstract
    • We report far-ultraviolet observations of Jupiter's moon Europa taken by Space Telescope Imaging Spectrograph (STIS) of the Hubble Space Telescope (HST) in January and February 2014 to test the hypothesis that the discovery of a water vapor aurora in December 2012 by local hydrogen (H) and oxygen (O) emissions with the STIS originated from plume activity possibly correlated with Europa's distance from Jupiter through tidal stress variations. The 2014 observations were scheduled with Europa near the apocenter similar to the orbital position of its previous detection. Tensile stresses on south polar fractures are expected to be highest in this orbital phase, potentially maximizing the probability for plume activity. No local H and O emissions were detected in the new STIS images. In the south polar region where the emission surpluses were observed in 2012, the brightnesses are sufficiently low in the 2014 images to be consistent with any H2O abundance from(0-5)x10(15) cm(-2). Large high-latitude plumes should have been detectable by the STIS, independent of the observing conditions and geometry. Because electron excitation of water vapor remains the only viable explanation for the 2012 detection, the new observations indicate that although the same orbital position of Europa for plume activity may be a necessary condition, it is not a sufficient condition. However, the December 2012 detection of coincident HI Lyman-alpha and OI 1304-angstrom emission surpluses in an similar to 200-km high region well separated above Europa's limb is a firm result and not invalidated by our 2014 STIS observations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy