SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stroeve Julienne) "

Sökning: WFRF:(Stroeve Julienne)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cohen, Judah, et al. (författare)
  • ARCTIC CHANGE AND POSSIBLE INFLUENCE ON MID-LATITUDE CLIMATE AND WEATHER - A US CLIVAR White Paper
  • 2018
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The Arctic has warmed more than twice as fast as the global average since the mid 20th century, a phenomenon known as Arctic amplification (AA). These profound changes to the Arctic system have coincided with a period of ostensibly more frequent events of extreme weather across the Northern Hemisphere (NH) mid-latitudes, including extreme heat and rainfall events and recent severe winters. Though winter temperatures have generally warmed since 1960 over mid-to-high latitudes, the acceleration in the rate of warming at high-latitudes, relative to the rest of the NH, started approximately in 1990. Trends since 1990 show cooling over the NH continents, especially in Northern Eurasia. The possible link between Arctic change and mid-latitude climate and weather has spurred a rush of new observational and modeling studies. A number of workshops held during 2013-2014 have helped frame the problem and have called for continuing and enhancing efforts for improving our understanding of Arctic-mid-latitude linkages and its attribution to the occurrence of extreme climate and weather events. Although these workshops have outlined some of the major challenges and provided broad recommendations, further efforts are needed to synthesize the diversified research results to identify where community consensus and gaps exist. Building upon findings and recommendations of the previous workshops, the US CLIVAR Working Group on Arctic Change and Possible Influence on Mid-latitude Climate and Weather convened an international workshop at Georgetown University in Washington, DC, on February 1-3, 2017. Experts in the fields of atmosphere, ocean, and cryosphere sciences assembled to assess the rapidly evolving state of understanding, identify consensus on knowledge and gaps in research, and develop specific actions to accelerate progress within the research community. With more than 100 participants, the workshop was the largest and most comprehensive gathering of climate scientists to address the topic to date. In this white paper, we synthesize and discuss outcomes from this workshop and activities involving many of the working group members.
  •  
2.
  • Kageyama, Masa, et al. (författare)
  • A multi-model CMIP6-PMIP4 study of Arctic sea ice at 127 ka : sea ice data compilation and model differences
  • 2021
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 17:1, s. 37-62
  • Tidskriftsartikel (refereegranskat)abstract
    • The Last Interglacial period (LIG) is a period with increased summer insolation at high northern latitudes, which results in strong changes in the terrestrial and marine cryosphere. Understanding the mechanisms for this response via climate modelling and comparing the models' representation of climate reconstructions is one of the objectives set up by the Paleoclimate Modelling Intercomparison Project for its contribution to the sixth phase of the Coupled Model Intercomparison Project. Here we analyse the results from 16 climate models in terms of Arctic sea ice. The multi-model mean reduction in minimum sea ice area from the pre industrial period (PI) to the LIG reaches 50 % (multi-model mean LIG area is 3.20×106 km2, compared to 6.46×106 km2 for the PI). On the other hand, there is little change for the maximum sea ice area (which is 15–16×106 km2 for both the PI and the LIG. To evaluate the model results we synthesise LIG sea ice data from marine cores collected in the Arctic Ocean, Nordic Seas and northern North Atlantic. The reconstructions for the northern North Atlantic show year-round ice-free conditions, and most models yield results in agreement with these reconstructions. Model–data disagreement appear for the sites in the Nordic Seas close to Greenland and at the edge of the Arctic Ocean. The northernmost site with good chronology, for which a sea ice concentration larger than 75 % is reconstructed even in summer, discriminates those models which simulate too little sea ice. However, the remaining models appear to simulate too much sea ice over the two sites south of the northernmost one, for which the reconstructed sea ice cover is seasonal. Hence models either underestimate or overestimate sea ice cover for the LIG, and their bias does not appear to be related to their bias for the pre-industrial period. Drivers for the inter-model differences are different phasing of the up and down short-wave anomalies over the Arctic Ocean, which are associated with differences in model albedo; possible cloud property differences, in terms of optical depth; and LIG ocean circulation changes which occur for some, but not all, LIG simulations. Finally, we note that inter-comparisons between the LIG simulations and simulations for future climate with moderate (1 % yr−1) CO2 increase show a relationship between LIG sea ice and sea ice simulated under CO2 increase around the years of doubling CO2. The LIG may therefore yield insight into likely 21st century Arctic sea ice changes using these LIG simulations.
  •  
3.
  • Katlein, Christian, et al. (författare)
  • Platelet Ice Under Arctic Pack Ice in Winter
  • 2020
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 47:16
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of platelet ice is well known to occur under Antarctic sea ice, where subice platelet layers form from supercooled ice shelf water. In the Arctic, however, platelet ice formation has not been extensively observed, and its formation and morphology currently remain enigmatic. Here, we present the first comprehensive, long-term in situ observations of a decimeter thick subice platelet layer under free-drifting pack ice of the Central Arctic in winter. Observations carried out with a remotely operated underwater vehicle (ROV) during the midwinter leg of the MOSAiC drift expedition provide clear evidence of the growth of platelet ice layers from supercooled water present in the ocean mixed layer. This platelet formation takes place under all ice types present during the surveys. Oceanographic data from autonomous observing platforms lead us to the conclusion that platelet ice formation is a widespread but yet overlooked feature of Arctic winter sea ice growth.
  •  
4.
  • Moon, Woosok, et al. (författare)
  • Physical length scales of wind-blown snow redistribution and accumulation on relatively smooth Arctic first-year sea ice
  • 2019
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 14:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Snow thickness measurements over relatively smooth Arctic first-year sea ice, obtained near Cambridge Bay in the Canadian Arctic (2014, 2016 and 2017) and near Elson Lagoon in the Alaskan Arctic (2003 and 2006), are analyzed to quantify physical length-scales and their relevant scaling behaviors. We use the multi-fractal temporally weighted detrended fluctuation analysis method to detect two major physical length-scales from the two independent study locations. Our results suggest that physical processes underlying the formation of snow dunes are consistent and that the wind is the main process shaping the snow thickness variability and redistribution. One scale, around 10 m, appears to be related to the formation of the snow 'dunes', while the other scale, between 30 and 100 m, is likely associated with the various interactions of the snow dunes such as merging, calving and lateral linking. Results imply that snow on level sea ice shows self-organized characteristics.
  •  
5.
  • Mortin, Jonas, et al. (författare)
  • Melt onset over Arctic sea ice controlled by atmospheric moisture transport
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:12, s. 6636-6642
  • Tidskriftsartikel (refereegranskat)abstract
    • The timing of melt onset affects the surface energy uptake throughout the melt season. Yet the processes triggering melt and causing its large interannual variability are not well understood. Here we show that melt onset over Arctic sea ice is initiated by positive anomalies of water vapor, clouds, and air temperatures that increase the downwelling longwave radiation (LWD) to the surface. The earlier melt onset occurs; the stronger are these anomalies. Downwelling shortwave radiation (SWD) is smaller than usual at melt onset, indicating that melt is not triggered by SWD. When melt occurs early, an anomalously opaque atmosphere with positive LWD anomalies preconditions the surface for weeks preceding melt. In contrast, when melt begins late, clearer than usual conditions are evident prior to melt. Hence, atmospheric processes are imperative for melt onset. It is also found that spring LWD increased during recent decades, consistent with trends toward an earlier melt onset.
  •  
6.
  • Notz, Dirk, et al. (författare)
  • Arctic Sea Ice in CMIP6
  • 2020
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 47:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine CMIP6 simulations of Arctic sea‐ice area and volume. We find that CMIP6 models produce a wide spread of mean Arctic sea‐ice area, capturing the observational estimate within the multimodel ensemble spread. The CMIP6 multimodel ensemble mean provides a more realistic estimate of the sensitivity of September Arctic sea‐ice area to a given amount of anthropogenic CO2 emissions and to a given amount of global warming, compared with earlier CMIP experiments. Still, most CMIP6 models fail to simulate at the same time a plausible evolution of sea‐ice area and of global mean surface temperature. In the vast majority of the available CMIP6 simulations, the Arctic Ocean becomes practically sea‐ice free (sea‐ice area <1 × 106 km2) in September for the first time before the Year 2050 in each of the four emission scenarios SSP1‐1.9, SSP1‐2.6, SSP2‐4.5, and SSP5‐8.5 examined here.
  •  
7.
  • Post, Eric, et al. (författare)
  • The polar regions in a 2°C warmer world
  • 2019
  • Ingår i: Science Advances. - : American Association for the Advancement of Science. - 2375-2548. ; 5:12
  • Forskningsöversikt (refereegranskat)abstract
    • Over the past decade, the Arctic has warmed by 0.75°C, far outpacing the global average, while Antarctic temperatures have remained comparatively stable. As Earth approaches 2°C warming, the Arctic and Antarctic may reach 4°C and 2°C mean annual warming, and 7°C and 3°C winter warming, respectively. Expected consequences of increased Arctic warming include ongoing loss of land and sea ice, threats to wildlife and traditional human livelihoods, increased methane emissions, and extreme weather at lower latitudes. With low biodiversity, Antarctic ecosystems may be vulnerable to state shifts and species invasions. Land ice loss in both regions will contribute substantially to global sea level rise, with up to 3 m rise possible if certain thresholds are crossed. Mitigation efforts can slow or reduce warming, but without them northern high latitude warming may accelerate in the next two to four decades. International cooperation will be crucial to foreseeing and adapting to expected changes.
  •  
8.
  • Willatt, Rosemary, et al. (författare)
  • Retrieval of Snow Depth on Arctic Sea Ice From Surface-Based, Polarimetric, Dual-Frequency Radar Altimetry
  • 2023
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 50:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Snow depth on sea ice is an Essential Climate Variable and a major source of uncertainty in satellite altimetry-derived sea ice thickness. During winter of the MOSAiC Expedition, the “KuKa” dual-frequency, fully polarized Ku- and Ka-band radar was deployed in “stare” nadir-looking mode to investigate the possibility of combining these two frequencies to retrieve snow depth. Three approaches were investigated: dual-frequency, dual-polarization and waveform shape, and compared to independent snow depth measurements. Novel dual-polarization approaches yielded r2 values up to 0.77. Mean snow depths agreed within 1cm, even for data sub-banded to CryoSat-2 SIRAL and SARAL AltiKa bandwidths. Snow depths from co-polarized dual-frequency approaches were at least a factor of four too small and had a r2 0.15 or lower. r2 for waveform shape techniques reached 0.72 but depths were underestimated. Snow depth retrievals using polarimetric information or waveform shape may therefore be possible from airborne/satellite radar altimeters.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy