SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stroth J.) "

Sökning: WFRF:(Stroth J.)

  • Resultat 1-10 av 35
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zohm, H., et al. (författare)
  • Overview of ASDEX upgrade results in view of ITER and DEMO
  • 2024
  • Ingår i: Nuclear Fusion. - 0029-5515 .- 1741-4326. ; 64:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments on ASDEX Upgrade (AUG) in 2021 and 2022 have addressed a number of critical issues for ITER and EU DEMO. A major objective of the AUG programme is to shed light on the underlying physics of confinement, stability, and plasma exhaust in order to allow reliable extrapolation of results obtained on present day machines to these reactor-grade devices. Concerning pedestal physics, the mitigation of edge localised modes (ELMs) using resonant magnetic perturbations (RMPs) was found to be consistent with a reduction of the linear peeling-ballooning stability threshold due to the helical deformation of the plasma. Conversely, ELM suppression by RMPs is ascribed to an increased pedestal transport that keeps the plasma away from this boundary. Candidates for this increased transport are locally enhanced turbulence and a locked magnetic island in the pedestal. The enhanced D-alpha (EDA) and quasi-continuous exhaust (QCE) regimes have been established as promising ELM-free scenarios. Here, the pressure gradient at the foot of the H-mode pedestal is reduced by a quasi-coherent mode, consistent with violation of the high-n ballooning mode stability limit there. This is suggestive that the EDA and QCE regimes have a common underlying physics origin. In the area of transport physics, full radius models for both L- and H-modes have been developed. These models predict energy confinement in AUG better than the commonly used global scaling laws, representing a large step towards the goal of predictive capability. A new momentum transport analysis framework has been developed that provides access to the intrinsic torque in the plasma core. In the field of exhaust, the X-Point Radiator (XPR), a cold and dense plasma region on closed flux surfaces close to the X-point, was described by an analytical model that provides an understanding of its formation as well as its stability, i.e., the conditions under which it transitions into a deleterious MARFE with the potential to result in a disruptive termination. With the XPR close to the divertor target, a new detached divertor concept, the compact radiative divertor, was developed. Here, the exhaust power is radiated before reaching the target, allowing close proximity of the X-point to the target. No limitations by the shallow field line angle due to the large flux expansion were observed, and sufficient compression of neutral density was demonstrated. With respect to the pumping of non-recycling impurities, the divertor enrichment was found to mainly depend on the ionisation energy of the impurity under consideration. In the area of MHD physics, analysis of the hot plasma core motion in sawtooth crashes showed good agreement with nonlinear 2-fluid simulations. This indicates that the fast reconnection observed in these events is adequately described including the pressure gradient and the electron inertia in the parallel Ohm’s law. Concerning disruption physics, a shattered pellet injection system was installed in collaboration with the ITER International Organisation. Thanks to the ability to vary the shard size distribution independently of the injection velocity, as well as its impurity admixture, it was possible to tailor the current quench rate, which is an important requirement for future large devices such as ITER. Progress was also made modelling the force reduction of VDEs induced by massive gas injection on AUG. The H-mode density limit was characterised in terms of safe operational space with a newly developed active feedback control method that allowed the stability boundary to be probed several times within a single discharge without inducing a disruptive termination. Regarding integrated operation scenarios, the role of density peaking in the confinement of the ITER baseline scenario (high plasma current) was clarified. The usual energy confinement scaling ITER98(p,y) does not capture this effect, but the more recent H20 scaling does, highlighting again the importance of developing adequate physics based models. Advanced tokamak scenarios, aiming at large non-inductive current fraction due to non-standard profiles of the safety factor in combination with high normalised plasma pressure were studied with a focus on their access conditions. A method to guide the approach of the targeted safety factor profiles was developed, and the conditions for achieving good confinement were clarified. Based on this, two types of advanced scenarios (‘hybrid’ and ‘elevated’ q-profile) were established on AUG and characterised concerning their plasma performance.
  •  
2.
  • Stroth, U., et al. (författare)
  • Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts.
  •  
3.
  • Meyer, H.F., et al. (författare)
  • Overview of physics studies on ASDEX Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m-1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle - measured for the first time - or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.
  •  
4.
  • Adamczewski-Musch, J., et al. (författare)
  • Production and electromagnetic decay of hyperons : a feasibility study with HADES as a phase-0 experiment at FAIR
  • 2021
  • Ingår i: European Physical Journal A. - : Springer Nature. - 1434-6001 .- 1434-601X. ; 57:4
  • Tidskriftsartikel (refereegranskat)abstract
    • A feasibility study has been performed in order to investigate the performance of the HADES detector to measure the electromagnetic decays of the hyperon resonances Sigma(1385)(0), Lambda(1405) and Lambda(1520) as well as the production of double strange baryon systems Xi(-) and Lambda Lambda in p + p reactions at a beam kinetic energy of 4.5GeV. The existing HADES detector will be upgraded by a new Forward Detector, which extends the detector acceptance into a range of polar angles that plays a crucial role for these investigations. The analysis of each channel is preceded by a consideration of the production cross-sections. Afterwards the expected signal count rates using a target consisting of either liquid hydrogen or polyethylene are summarized.
  •  
5.
  • Marganiec, J., et al. (författare)
  • Coulomb breakup of 17Ne from the viewpoint of nuclear astrophysics
  • 2012
  • Ingår i: Proceedings of Science. - Proceedings of Science : Sissa. - 1824-8039.
  • Konferensbidrag (refereegranskat)abstract
    • By the Coulomb breakup of 17Ne, the time-reversed reaction 15O(2p,γ)17Ne has been studied. This reaction might play an important role in the rp process, as a break-out reaction of the hot CNO cycle. The secondary 17Ne ion beam with an energy of 500 MeV/nucleon has been dissociated in a Pb target. The reaction products have been detected with the LAND-R3B experimental setup at GSI. The preliminary differential and integral Coulomb dissociation cross section sCoul has been determined, which then will be converted into a photo-absorption cross section sphoto, and a two-proton radiative capture cross section σcap. Additionally, information about the structure of the 17Ne, a potential two-proton halo nucleus, will be received. The analysis is in progress. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
  •  
6.
  • Aksouh, F., et al. (författare)
  • STUDY OF THE O-15(2p,gamma)Ne-17 CROSS SECTION BY COULOMB DISSOCIATION OF Ne-17 FOR THE rp PROCESS OF NUCLEOSYNTHESIS
  • 2014
  • Ingår i: Acta Physica Polonica, Series B.. - 1509-5770 .- 0587-4254. ; 45:2, s. 229-234
  • Tidskriftsartikel (refereegranskat)abstract
    • The O-15(2p, gamma)Ne-17 cross section has been studied by the inverse reaction, the Coulomb dissociation of Ne-17. The experiment has been performed at the GSI. The Ne-17 excitation energy prior to decay has been reconstructed by using the invariant-mass method. The preliminary differential and integral Coulomb dissociation cross sections (sigma(Coul)) have been extracted, which provide a photoabsorption (sigma(photo)) and a radiative capture cross section (sigma(cap)). Additionally, important information about the Ne-17 nuclear structure will be obtained. The analysis is in progress.
  •  
7.
  • Marganiec, J, et al. (författare)
  • Experimental study of the 15O(2p ,γ)17Ne cross section by Coulomb Dissociation for the rp process
  • 2016
  • Ingår i: Journal of Physics Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596.
  • Konferensbidrag (refereegranskat)abstract
    • The time-reversed reaction 15O(2p,γ)17Ne has been studied by the Coulomb dissociation technique. Secondary 17Ne ion beams at 500 AMeV have been produced by fragmentation reactions of 20Ne in a beryllium production target and dissociated on a secondary Pb target. The incoming beam and the reaction products have been identified with the kinematically complete LAND-R3B experimental setup at GSI. The excitation energy prior to decay has been reconstructed by using the invariant-mass method. The preliminary differential and integral Coulomb Dissociation cross sections (σCoul) have been calculated, which provide a photoabsorption (σphoto) and a radiative capture cross section (σcap). Additionally, important information about the nuclear structure of the 17Ne nucleus will be obtained. The analysis is in progress.
  •  
8.
  • Marganiec, J., et al. (författare)
  • Experimental study of the O-15(2p, gamma) Ne-17 cross section by Coulomb Dissociation for the rp process
  • 2016
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 665:1
  • Konferensbidrag (refereegranskat)abstract
    • The time-reversed reaction O-15(2p, gamma) Ne-17 has been studied by the Coulomb dissociation technique. Secondary 17Ne ion beams at 500 AMeV have been produced by fragmentation reactions of Ne-20 in a beryllium production target and dissociated on a secondary Pb target. The incoming beam and the reaction products have been identified with the kinematically complete LAND-(RB)-B-3 experimental setup at GSI. The excitation energy prior to decay has been reconstructed by using the invariant-mass method. The preliminary differential and integral Coulomb Dissociation cross sections (sigma(Coul)) have been calculated, which provide a photoabsorption (sigma(photo)) and a radiative capture cross section (sigma(cap)). Additionally, important information about the nuclear structure of the Ne-17 nucleus will be obtained. The analysis is in progress.
  •  
9.
  • Wamers, F., et al. (författare)
  • Exclusive measurements of nuclear breakup reactions of 17Ne
  • 2014
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2101-6275 .- 2100-014X. ; 66
  • Konferensbidrag (refereegranskat)abstract
    • We have studied one-proton-removal reactions of about 500MeV/u 17Ne beams on a carbon target at the R3B/LAND setup at GSI by detecting beam-like 15O-p and determining their relative-energy distribution. We exclusively selected the removal of a 17Ne halo proton, and the Glauber-model analysis of the 16F momentum distribution resulted in an s2 contribution in the 17Ne ground state of about 40%. © Owned by the authors, published by EDP Sciences, 2014.
  •  
10.
  • Aleksandrov, D., et al. (författare)
  • Halo excitations in fragmentation of He-6 at 240 MeV/u on carbon and lead targets
  • 2000
  • Ingår i: Nuclear Physics A. - 0375-9474. ; 669:1-2, s. 51-64
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissociation of a 240 MeV/u beam of He-6, incident on carbon and lead targets, has been studied in kinematically complete experiments to investigate low-lying excitation modes in the halo nucleus He-6. It is shown that alignment effects characterize the inelastic scattering and allow an unambiguous assignment of the spin of a narrow resonance observed in the excitation energy spectrum. The differential cross sections for the He-6 inelastic scattering on carbon and lead targets were deduced from the measured moments of the two neutrons and the a-particle. An analysis of these distributions shows that quadrupole and, possibly, monopole excitations characterize the hadronic interaction, while the dipole mode is dominating in Coulomb dissociation. Neither theoretically predicted new resonance states in He-6 nor nuclear excitation of a dipole mode were found. Direct evidence has been obtained for strong suppression of Coulornb post-acceleration in direct Coulomb breakup in a lead target.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 35

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy