SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Strumberger E.) "

Sökning: WFRF:(Strumberger E.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Meyer, H.F., et al. (författare)
  • Overview of physics studies on ASDEX Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m-1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle - measured for the first time - or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.
  •  
2.
  •  
3.
  • Suttrop, W., et al. (författare)
  • In-vessel saddle coils for MHD control in ASDEX Upgrade
  • 2009
  • Ingår i: Fusion engineering and design. - Lausanne : ELSEVIER SCIENCE SA. - 0920-3796 .- 1873-7196. ; 84:2-6, s. 290-294
  • Tidskriftsartikel (refereegranskat)abstract
    • A set of 24 in-vessel saddle coils is planned for MHD control experiments in ASDEX Upgrade. These coils can produce static and alternating error fields for suppression of Edge Localised Modes, locked mode rotation control and, together with additional conducting wall elements, resistive wall mode excitation and feedback stabilisation experiments. All of these applications address critical physics issues for the operation of ITER. This extension is implemented in several stages, starting with two poloidally separated rings of eight toroidally distributed saddle coils above and below the outer midplane. In stages 2 and 3, eight midplane coils around the large vessel access ports and 12 AC Power converters are added, respectively. Finally (stage 4), the existing passive stabilising loop (PSL), a passive conductor for vertical growth rate reduction, will be complemented by wall elements that allow helical Current patterns to reduce the RWM growth rate for active control within the accessible bandwidth. The system is capable of producing error fields with toroidal mode number n = 4 for plasma edge ergodisation with core island width well below the neo-classical tearing mode seed island width even without rotational shielding. Phase variation between the three toroidal coil rings allows to create or avoid resonances with the plasma safety factor profile, in order to test the importance of resonances for ELM suppression.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy