SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Struzzi Claudia) "

Sökning: WFRF:(Struzzi Claudia)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boix, Virgínia, et al. (författare)
  • Area-selective Electron-beam induced deposition of Amorphous-BNx on graphene
  • 2021
  • Ingår i: Applied Surface Science. - : Elsevier BV. - 0169-4332. ; 557, s. 149806-149806
  • Tidskriftsartikel (refereegranskat)abstract
    • Thin, stable and inert dielectric spacers are essential for manufacturing electronic devices based on 2D materials. However, direct synthesis on top of 2D materials is difficult due to their inert nature. In this work, we studied how an electron beam induces fragmentation of borazine and enables spatially confined synthesis of amorphous-BNx on graphene at room temperature. Using a combination of X-ray Photoelectron Spectroscopy, Low Energy Electron Microscopy, and Scanning Tunneling Microscopy we studied the morphology of the heterostructure, its chemical composition, and finally its temperature evolution. We find that electron-beam induced deposition starts by the binding of heavily fragmentized borazine, including atomic boron, followed by the growth of a multilayer with a 1:0.7 B:N ratio. The final structure exhibits a thermal stability up to 1400 K and ~ 50 nm spatial control provided by the electron beam. Our studies provide surface science insight into the use of electron beams for synthesis and lateral control of stable and inert layers in 2D heterostructures.
  •  
2.
  • Bouhafs, Chamseddine, et al. (författare)
  • Synthesis of large-area rhombohedral few-layer graphene by chemical vapor deposition on copper
  • 2021
  • Ingår i: Carbon. - : Elsevier BV. - 0008-6223. ; 177, s. 282-290
  • Tidskriftsartikel (refereegranskat)abstract
    • Rhombohedral-stacked few-layer graphene (FLG) displays peculiar electronic properties that could lead to phenomena such as high-temperature superconductivity and magnetic ordering. To date, experimental studies have been mainly limited by the difficulty in isolating rhombohedral FLG with thickness exceeding 3 layers and device-compatible size. In this work, we demonstrate the synthesis and transfer of rhombohedral graphene with thickness up to 9 layers and areas up to ∼50 μm2. The domains of rhombohedral FLG are identified by Raman spectroscopy and are found to alternate with Bernal regions within the same crystal in a stripe-like configuration. Near-field nano-imaging further confirms the structural integrity of the respective stacking orders. Combined spectroscopic and microscopic analyses indicate that rhombohedral-stacking formation is strongly correlated to the underlying copper step-bunching and emerges as a consequence of interlayer displacement along preferential crystallographic orientations. The growth and transfer of rhombohedral FLG with the reported thickness and size shall facilitate the observation of predicted unconventional physics and ultimately add to its technological relevance.
  •  
3.
  • Kim, Kyung Ho, 1984, et al. (författare)
  • Ambipolar charge transport in quasi-free-standing monolayer graphene on SiC obtained by gold intercalation
  • 2020
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 102:16
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a study of quasi-free-standing monolayer graphene obtained by intercalation of Au atoms at the interface between the carbon buffer layer (Bu-L) and the silicon-terminated face (0001) of 4H-silicon carbide. Au intercalation is achieved by deposition of an atomically thin Au layer on the Bu-L followed by annealing at 850 °C in an argon atmosphere. We explore the intercalation of Au and decoupling of the Bu-L into quasi-free-standing monolayer graphene by surface science characterization and electron transport in top-gated electronic devices. By gate-dependent magnetotransport we find that the Au-intercalated buffer layer displays all properties of monolayer graphene, namely gate-tunable ambipolar transport across the Dirac point, but we find no observable enhancement of spin-orbit effects in the graphene layer, despite its proximity to the intercalated Au layer. 
  •  
4.
  • Niu, Yuran, et al. (författare)
  • MAXPEEM : a spectromicroscopy beamline at MAX IV laboratory
  • 2023
  • Ingår i: Journal of Synchrotron Radiation. - 0909-0495. ; 30:Pt 2, s. 468-478
  • Tidskriftsartikel (refereegranskat)abstract
    • MAXPEEM, a dedicated photoemission electron microscopy beamline at MAX IV Laboratory, houses a state-of-the-art aberration-corrected spectroscopic photoemission and low-energy electron microscope (AC-SPELEEM). This powerful instrument offers a wide range of complementary techniques providing structural, chemical and magnetic sensitivities with a single-digit nanometre spatial resolution. The beamline can deliver a high photon flux of ≥1015 photons s−1 (0.1% bandwidth)−1 in the range 30–1200 eV with full control of the polarization from an elliptically polarized undulator. The microscope has several features which make it unique from similar instruments. The X-rays from the synchrotron pass through the first beam separator and impinge the surface at normal incidence. The microscope is equipped with an energy analyzer and an aberration corrector which improves both the resolution and the transmission compared with standard microscopes. A new fiber-coupled CMOS camera features an improved modulation transfer function, dynamic range and signal-to-noise ratio compared with the traditional MCP-CCD detection system.
  •  
5.
  • Scardamaglia, Mattia, et al. (författare)
  • Comparative study of copper oxidation protection with graphene and hexagonal boron nitride
  • 2021
  • Ingår i: Carbon. - : Elsevier BV. - 0008-6223. ; 171, s. 610-617
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of protective barriers to isolate a metal surface from an aggressive environment is a common way to inhibit its degradation. We used ambient pressure x-ray photoelectron spectroscopy to assess in real time the evolution of the copper surface and the contextual protective action of 2D material coatings (graphene and hexagonal boron nitride) towards copper oxidation. In an isobaric experiment with 2 mbar of oxygen, the bare copper oxidizes near room temperature, while both 2D materials can retard the onset temperature for the first oxidation of copper by more than 120 °C. However, their protection mechanism is different: boron nitride behaves more straightforwardly, forming an effective barrier to copper oxidation until it is etched away at high temperatures, leading to a rapid oxidation to cuprous and then cupric oxide. On the other hand, graphene reveals to be a more interesting playground underneath oxygen intercalates and begins a slower undercover oxidation of copper. The coexistence between graphene and cuprous oxide, not observed in boron nitride, protects the copper from further oxidation to cupric oxide.
  •  
6.
  • Scardamaglia, Mattia, et al. (författare)
  • Highlighting the Dynamics of Graphene Protection toward the Oxidation of Copper under Operando Conditions
  • 2019
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 11:32, s. 29448-29457
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed spatially resolved near-ambient-pressure photoemission spectromicroscopy on graphene-coated copper in operando under oxidation conditions in an oxygen atmosphere (0.1 mbar). We investigated regions with bare copper and areas covered with mono- and bi-layer graphene flakes, in isobaric and isothermal experiments. The key method in this work is the combination of spatial and chemical resolution of the scanning photoemission microscope operating in a near-ambient-pressure environment, thus allowing us to overcome both the material and pressure gap typical of standard ultrahigh-vacuum X-ray photoelectron spectroscopy (XPS) and to observe in operando the protection mechanism of graphene toward copper oxidation. The ability to perform spatially resolved XPS and imaging at high pressure allows for the first time a unique characterization of the oxidation phenomenon by means of photoelectron spectromicroscopy, pushing the limits of this technique from fundamental studies to real materials under working conditions. Although bare Cu oxidizes naturally at room temperature, our results demonstrate that such a graphene coating acts as an effective barrier to prevent copper oxidation at high temperatures (over 300 °C), until oxygen intercalation beneath graphene starts from boundaries and defects. We also show that bilayer flakes can protect at even higher temperatures. The protected metallic substrate, therefore, does not suffer corrosion, preserving its metallic characteristic, making this coating appealing for any application in an aggressive atmospheric environment at high temperatures.
  •  
7.
  • Zakharov, Alexei, et al. (författare)
  • Wafer Scale Growth and Characterization of Edge Specific Graphene Nanoribbons for Nanoelectronics
  • 2019
  • Ingår i: ACS Applied Nano Materials. - : American Chemical Society (ACS). - 2574-0970. ; 2:1, s. 156-162
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the ways to use graphene in field effect transistors is to introduce a band gap by quantum confinement effect. That is why narrow graphene nanoribbons (GNRs) with width less than 50 nm are considered to be essential components in future graphene electronics. The growth of graphene on sidewalls of SiC(0001) mesa structures using scalable photolithography was shown to produce high quality GNRs with excellent transport properties. Such epitaxial graphene nanoribbons are very important in fundamental science but if GNRs are supposed to be used in advanced nanoelectronics, high quality thin (<50 nm) nanoribbons should be produced on a large (wafer) scale. Here we present a technique for scalable template growth of high quality GNRs on Si-face of SiC(0001) and provide detailed structural information along with transport properties. For the first time we succeeded now to avoid SiC-facet instabilities in order to grow high quality GNRs along both [11̅00] and [112̅0] crystallographic directions on the same substrate. The quality of the grown nanoribbons was confirmed by comprehensive characterization with atomic resolution STM, dark field LEEM, and transport measurements. This approach generates an entirely new platform for both fundamental and application driven research of quasi one-dimensional carbon based magnetism and spintronics.
  •  
8.
  • Zeller, Patrick, et al. (författare)
  • Scanning Photoelectron Spectro-Microscopy : A Modern Tool for the Study of Materials at the Nanoscale
  • 2018
  • Ingår i: Physica Status Solidi (A) Applications and Materials Science. - : Wiley. - 1862-6300. ; 215:19
  • Tidskriftsartikel (refereegranskat)abstract
    • The advanced properties of modern materials originate from their nanoscale size and shape and from chemical modifications or doping. Special techniques that can measure the chemical state in the nanoscale are required for exploration and understanding the properties of these materials. While X-ray photoelectron spectroscopy (XPS) can access the necessary chemical information, conventional setups have no spatial resolution. The scanning photoelectron microscope (SPEM) takes in advent the third generation synchrotron radiation facilities and uses a zone plate (ZP) focusing optics that allows spatially resolved XPS measurements in the submicron scale. Several recent examples of investigations of chemically modified or doped nanomaterials are given. The modification of suspended and supported graphene with nitrogen and fluorine is presented as well as the doping dependent position of the Fermi-level in single GsAs nanowires and the Mott–Hubbard transition in Cr-doped vanadium oxide. These examples show several peculiar SPEM abilities like a high surface and chemical sensitivity and a submicron spatial resolution proving the capability and importance of this technique to study materials at the nanoscale.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy