SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stubelius Alexandra 1983) "

Sökning: WFRF:(Stubelius Alexandra 1983)

  • Resultat 1-10 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Annica, 1983, et al. (författare)
  • Estrogen regulates T helper 17 phenotype and localization in experimental autoimmune arthritis
  • 2015
  • Ingår i: Arthritis Research & Therapy. - : Springer Science and Business Media LLC. - 1478-6354. ; 17:32
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: The incidence and progression of many autoimmune diseases are sex-biased, which might be explained by the immunomodulating properties of endocrine hormones. Treatment with estradiol potently inhibits experimental autoimmune arthritis. Interleukin-17-producing T helper cells (Th17) are key players in several autoimmune diseases, particularly in rheumatoid arthritis. The aim of this study was to investigate the effects of estrogen on Th17 cells in experimental arthritis. Methods: Ovariectomized DBA/1 mice treated with 17 beta-estradiol (E2) or placebo were subjected to collagen-induced arthritis (CIA), and arthritis development was assessed. Th17 cells in joints and lymph nodes were studied by flow cytometry. Lymph node Th17 cells were also examined in ovariectomized estrogen receptor a-knockout mice (ERa-/-) and wild-type littermates, treated with E2 or placebo and subjected to antigen-induced arthritis. Results: E2-treated mice with established CIA showed reduced severity of arthritis and fewer Th17 cells in joints compared with controls. Interestingly, E2-treated mice displayed increased Th17 cells in lymph nodes during the early phase of the disease, dependent on ER alpha. E2 increased the expression of C-C chemokine receptor 6 (CCR6) on lymph node Th17 cells as well as the expression of the corresponding C-C chemokine ligand 20 (CCL20) within lymph nodes. Conclusions: This is the first study in which the effects of E2 on Th17 cells have been characterized in experimental autoimmune arthritis. We report that E2 treatment results in an increase of Th17 cells in lymph nodes during the early phase of arthritis development, but leads to a decrease of Th17 in joints during established arthritis. Our data suggest that this may be caused by interference with the CCR6-CCL20 pathway, which is important for Th17 cell migration. This study contributes to the understanding of the role of estrogen in the development of autoimmune arthritis and opens up new fields for research concerning the sex bias in autoimmune disease.
  •  
2.
  • Andersson, Annica, 1983, et al. (författare)
  • IL-17-producing γδT cells are regulated by estrogen during development of experimental arthritis.
  • 2015
  • Ingår i: Clinical immunology (Orlando, Fla.). - : Elsevier BV. - 1521-7035 .- 1521-6616. ; 161:2, s. 324-32
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin-17 (IL-17) drives inflammation and destruction of joints in rheumatoid arthritis (RA). The female sex hormone 17β-estradiol (E2) inhibits experimental arthritis. γδT cells are significant producers of IL-17, thus the aim of this study was to investigate if E2 influenced IL-17(+) γδT cells during arthritis development using a variety of experimental RA models: collagen-induced arthritis (CIA); antigen-induced arthritis (AIA); and collagen antibody-induced arthritis (CAIA). We demonstrate that E2 treatment decreases IL-17(+) γδT cell number in joints, but increases IL-17(+) γδT cells in draining lymph nodes, suggesting an E2-mediated prevention of IL-17(+) γδT cell migration from lymph nodes to joints, in concert with our recently reported effects of E2 on Th17 cells (Andersson et al., 2015). E2 did neither influence the general γδT cell population nor IFNγ(+) γδT cells, implying a selective regulation of IL-17-producing cells. In conclusion, this study contributes to the understanding of estrogen's role in autoimmune disease.
  •  
3.
  • Börjesson, Anna E, et al. (författare)
  • The role of activation functions 1 and 2 of estrogen receptor-alpha for the effects of estradiol and selective estrogen receptor modulators in male mice
  • 2013
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 28:5, s. 1117-1126
  • Tidskriftsartikel (refereegranskat)abstract
    • Estradiol (E2) is important for male skeletal health and the effect of E2 is mediated via estrogen receptor (ER)-. This was demonstrated by the findings that men with an inactivating mutation in aromatase or a nonfunctional ER had osteopenia and continued longitudinal growth after sexual maturation. The aim of the present study was to evaluate the role of different domains of ER for the effects of E2 and selective estrogen receptor modulators (SERMs) on bone mass in males. Three mouse models lacking either ERAF-1 (ERAF-10), ERAF-2 (ERAF-20), or the total ER (ER/) were orchidectomized (orx) and treated with E2 or placebo. E2 treatment increased the trabecular and cortical bone mass and bone strength, whereas it reduced the thymus weight and bone marrow cellularity in orx wild type (WT) mice. These parameters did not respond to E2 treatment in orx ER/ or ERAF-20 mirx ERAF-10 mice were tissue-dependent, with a clear response in cortical bone parameters and bone marrow cellularity, but no response in trabecular bone. To determine the role of ERAF-1 for the effects of SERMs, we treated orx WT and ERAF-10 mice with raloxifene (Ral), lasofoxifene (Las), bazedoxifene (Bza), or vehicle. These SERMs increased total body areal bone mineral density (BMD) and trabecular volumetric BMD to a similar extent in orx WT mice. Furthermore, only Las increased cortical thickness significantly and only Bza increased bone strength significantly. However, all SERMs showed a tendency toward increased cortical bone parameters. Importantly, all SERM effects were absent in the orx ERAF-10 mice. In conclusion, ERAF-2 is required for the estrogenic effects on all evaluated parameters, whereas the role of ERAF-1 is tissue-specific. All evaluated effects of Ral, Las and Bza are dependent on a functional ERAF-1. Our findings might contribute to the development of bone-specific SERMs in males. (c) 2013 American Society for Bone and Mineral Research.
  •  
4.
  • Engdahl, Cecilia, 1983, et al. (författare)
  • Role of Androgen and Estrogen Receptors for the Action of Dehydroepiandrosterone (DHEA)
  • 2014
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 155:3, s. 889-896
  • Tidskriftsartikel (refereegranskat)abstract
    • Dehydroepiandrosterone (DHEA) is an abundant steroid hormone, and its mechanism of action is yet to be determined. The aim of this study was to elucidate the importance of androgen receptors (ARs) and estrogen receptors (ERs) for DHEA function. Orchidectomized C57BL/6 mice were treated with DHEA, DHT, 17 beta-estradiol-3-benzoate (E2), or vehicle. Orchidectomized AR-deficient (ARKO) mice and wild-type (WT) littermates were treated with DHEA or vehicle for 2.5 weeks. At termination, bone mineral density (BMD) was evaluated, thymus and seminal vesicles were weighted, and submandibular glands (SMGs) were histologically examined. To evaluate the in vivo ER activation of the classical estrogen signaling pathway, estrogen response element reporter mice were treated with DHEA, DHT, E2, or vehicle, and a reporter gene was investigated in different sex steroid-sensitive organs after 24 hours. DHEA treatment increased trabecular BMD and thymic atrophy in both WT and ARKO mice. In WT mice, DHEA induced enlargement of glands in the SMGs, whereas this effect was absent in ARKO mice. Furthermore, DHEA was able to induce activation of classical estrogen signaling in bone, thymus, and seminal vesicles but not in the SMGs. In summary, the DHEA effects on trabecular BMD and thymus do not require signaling via AR and DHEA can activate the classical estrogen signaling in these organs. In contrast, DHEA induction of gland size in the SMGs is dependent on AR and does not involve classical estrogen signaling. Thus, both ERs and ARs are involved in mediating the effects of DHEA in an organ-dependent manner.
  •  
5.
  •  
6.
  • Movérare-Skrtic, Sofia, et al. (författare)
  • The estrogen receptor antagonist ICI 182,780 can act both as an agonist and an inverse agonist when estrogen receptor α AF-2 is modified.
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 111:3, s. 1180-1185
  • Tidskriftsartikel (refereegranskat)abstract
    • The bone-sparing effect of estrogen is primarily mediated via estrogen receptor (ER) α, which stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal and AF-2 in the ligand-binding domain. It was recently demonstrated that the ER antagonist ICI 182,780 (ICI) acts as an ER agonist in uterus of mice with mutations in the ERα AF-2. To evaluate the estrogen-like effects of ICI in different tissues, ovariectomized wild-type mice and mice with mutations in the ERα AF-2 (ERαAF-2(0)) were treated with ICI, estradiol, or vehicle for 3 wk. Estradiol increased the trabecular and cortical bone mass as well as the uterine weight, whereas it reduced fat mass, thymus weight, and the growth plate height in wild-type but not in ERαAF-2(0) mice. Although ICI had no effect in wild-type mice, it exerted tissue-specific effects in ERαAF-2(0) mice. It acted as an ERα agonist on trabecular bone mass and uterine weight, whereas no effect was seen on cortical bone mass, fat mass, or thymus weight. Surprisingly, a pronounced inverse agonistic activity was seen on the growth plate height, resulting in enhanced longitudinal bone growth. In conclusion, ICI uses ERα AF-1 in a tissue-dependent manner in mice lacking ERαAF-2, resulting in no effect, agonistic activity, or inverse agonistic activity. We propose that ERα lacking AF-2 is constitutively active in the absence of ligand in the growth plate, enabling ICI to act as an inverse agonist.
  •  
7.
  • Andersson, Annica, 1983, et al. (författare)
  • Selective oestrogen receptor modulators lasofoxifene and bazedoxifene inhibit joint inflammation and osteoporosis in ovariectomised mice with collagen-induced arthritis.
  • 2016
  • Ingår i: Rheumatology (Oxford, England). - : Oxford University Press (OUP). - 1462-0332 .- 1462-0324. ; 55:3, s. 553-563
  • Tidskriftsartikel (refereegranskat)abstract
    • RA predominantly affects post-menopausal women and is strongly associated with development of generalised osteoporosis. To find treatments that target both joint manifestations and osteoporosis in RA is desirable. The third generation of selective oestrogen receptor modulators (SERMs) [lasofoxifene (LAS) and bazedoxifene (BZA)] are new treatment options for post-menopausal osteoporosis. The aim of this study was to investigate the effects of LAS and BZA on arthritic disease and inflammation-associated bone loss using CIA in mice.
  •  
8.
  • Andersson, Annica, 1983, et al. (författare)
  • Suppression of Experimental Arthritis and Associated Bone Loss by a Tissue-Selective Estrogen Complex.
  • 2016
  • Ingår i: Endocrinology. - : The Endocrine Society. - 1945-7170 .- 0013-7227. ; 157:3, s. 1013-20
  • Tidskriftsartikel (refereegranskat)abstract
    • In addition to the systemic inflammation present in rheumatoid arthritis (RA), decreased estradiol levels in postmenopausal RA patients further accelerate bone loss in these patients. The tissue-selective estrogen complex (TSEC), an estrogen combined with a selective estrogen receptor modulator, is a new hormone replacement therapy option. The first approved TSEC, containing conjugated estrogens and bazedoxifene (BZA), reduces menopausal symptoms and prevents osteoporosis with an improved safety profile compared with conventional hormone replacement therapy. Previous studies have shown that estrogens strongly inhibit experimental arthritis whereas BZA is mildly suppressive. In this study the antiarthritic potential of combined BZA and estradiol is explored for the first time. Female ovariectomized DBA/1 mice were subjected to collagen-induced arthritis, an experimental postmenopausal RA model, and treated with BZA, 17β-estradiol (E2), combined BZA and E2 (BZA/E2), or vehicle. BZA/E2 suppressed arthritis severity and frequency, synovitis, and joint destruction, equally efficient as E2 alone. Unwanted estrogenic proliferative effects on the endometrium were blocked by the addition of BZA, determined by collecting uterine weights. Bone mineral density was measured by peripheral quantitative computed tomography, and all treatments protected collagen-induced arthritis mice from both trabecular and cortical bone loss. Moreover, BZA/E2, but not E2 alone, inhibited preosteoclast formation and reduced serum anticollagen type II antibodies. In conclusion, a TSEC, herein combined BZA/E2, suppresses experimental arthritis and prevents associated bone loss as efficiently as E2 alone but with minimal uterine effects, highlighting the need for clinical trials that evaluate the addition of a TSEC to conventional postmenopausal RA treatment.
  •  
9.
  • Bernardi, Angelina I, et al. (författare)
  • Selective estrogen receptor modulators in T cell development and T cell dependent inflammation
  • 2015
  • Ingår i: Immunobiology. - : Elsevier BV. - 0171-2985. ; 220:10, s. 1122-1128
  • Tidskriftsartikel (refereegranskat)abstract
    • Lasofoxifene (las) and bazedoxifene (bza) are third generation selective estrogen receptor modulators (SERMs) with minimal estrogenic side effects, approved for treatment of postmenopausal osteoporosis. T cells are involved in the pathology of postmenopausal osteoporosis and previous studies have established an important role for 17 beta-estradiol (E2) in T cell development and function. E2 causes a drastic thymic atrophy, alters the composition of thymic T cell populations, and inhibits T cell dependent inflammation. In contrast, the second generation SERM raloxifene (ral) lacks these properties. Although las and bza are drugs approved for treatment of postmenopausal bone loss, it is of importance to study their effects on other biological aspects in order to extend the potential use of these compounds. Therefore, the aim of this study was to investigate if treatment with las and bza affects T lymphopoiesis and T cell dependent inflammation. C57BI6 mice were ovariectomized (ovx) and treated with vehicle, E2, ral, las or bza. As expected, E2 reduced both thymus weight and decreased the proportion of early T cell progenitors while increasing more mature T cell populations in the thymus. E2 also suppressed the T cell dependent delayed-type hypersensitivity (DTH) reaction to oxazolone (OXA). Ral and las, but not bza, decreased thymus weight, while none of the SERMs had any effects on T cell populations in the thymus or on inflammation in DTH. In conclusion, this study shows that treatment with las or bza does not affect T lymphopoiesis or T cell dependent inflammation. (C) 2015 The Authors. Published by Elsevier GmbH.
  •  
10.
  • Börjesson, Anna E, et al. (författare)
  • Roles of transactivating functions 1 and 2 of estrogen receptor-alpha in bone.
  • 2011
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 108:15, s. 6288-6293
  • Tidskriftsartikel (refereegranskat)abstract
    • The bone-sparing effect of estrogen is primarily mediated via estrogen receptor-α (ERα), which stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal and AF-2 in the ligand binding domain. To evaluate the role of ERα AF-1 and ERα AF-2 for the effects of estrogen in bone in vivo, we analyzed mouse models lacking the entire ERα protein (ERα(-/-)), ERα AF-1 (ERαAF-1(0)), or ERα AF-2 (ERαAF-2(0)). Estradiol (E2) treatment increased the amount of both trabecular and cortical bone in ovariectomized (OVX) WT mice. Neither the trabecular nor the cortical bone responded to E2 treatment in OVX ERα(-/-) or OVX ERαAF-2(0) mice. OVX ERαAF-1(0) mice displayed a normal E2 response in cortical bone but no E2 response in trabecular bone. Although E2 treatment increased the uterine and liver weights and reduced the thymus weight in OVX WT mice, no effect was seen on these parameters in OVX ERα(-/-) or OVX ERαAF-2(0) mice. The effect of E2 in OVX ERαAF-1(0) mice was tissue-dependent, with no or weak E2 response on thymus and uterine weights but a normal response on liver weight. In conclusion, ERα AF-2 is required for the estrogenic effects on all parameters evaluated, whereas the role of ERα AF-1 is tissue-specific, with a crucial role in trabecular bone and uterus but not cortical bone. Selective ER modulators stimulating ERα with minimal activation of ERα AF-1 could retain beneficial actions in cortical bone, constituting 80% of the skeleton, while minimizing effects on reproductive organs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 33
Typ av publikation
tidskriftsartikel (29)
forskningsöversikt (3)
konferensbidrag (1)
Typ av innehåll
refereegranskat (32)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Stubelius, Alexandra ... (33)
Carlsten, Hans, 1954 (20)
Islander, Ulrika, 19 ... (16)
Ohlsson, Claes, 1965 (14)
Andersson, Annica, 1 ... (12)
Lagerquist, Marie K (9)
visa fler...
Engdahl, Cecilia, 19 ... (7)
Tivesten, Åsa, 1969 (6)
Wilhelmson, Anna S K (5)
Grahnemo, Louise (5)
Nurkkala Karlsson, M ... (4)
Windahl, Sara H, 197 ... (3)
Bernardi, Angelina I (3)
Lagerquist, Marie (3)
Sjögren, Klara, 1970 (3)
Fagman, Johan Bourgh ... (3)
Corciulo, Carmen (3)
Poutanen, Matti (2)
Chambon, P. (2)
Erlandsson, Malin, 1 ... (2)
Ekwall, Olov, 1968 (2)
Movérare-Skrtic, Sof ... (2)
Mårtensson, Inga-Lil ... (2)
Farman, Helen H., 19 ... (2)
Fogelstrand, Per, 19 ... (2)
Kindblom, Jenny, 197 ... (2)
Barrett, Aidan (2)
Humeniuk, Piotr (2)
Scheffler, Julia M. (2)
Svensson, Mattias, 1 ... (1)
Holmdahl, R (1)
Tietze, Alesia A., 1 ... (1)
Tietze, Daniel, 1980 (1)
Johansson, Maria E, ... (1)
Nissbrandt, Hans, 19 ... (1)
Lindholm, Catharina, ... (1)
Forsblad d'Elia, Hel ... (1)
Karlsson, Anna, 1967 (1)
Frenkel, B. (1)
Chambon, Pierre (1)
Drevinge, Christina, ... (1)
Andréasson, Emil (1)
Forsman, Huamei (1)
Westberg, Lars, 1973 (1)
Camponeschi, Alessan ... (1)
Gustafsson, Jan-Åke (1)
Johansson, Inger (1)
Karlsson, Mikael C I (1)
Ohlsson, C. (1)
Beyer, Luisa I. (1)
visa färre...
Lärosäte
Göteborgs universitet (25)
Chalmers tekniska högskola (11)
Karolinska Institutet (4)
Umeå universitet (1)
Språk
Engelska (33)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (33)
Naturvetenskap (4)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy