SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Studer L) "

Sökning: WFRF:(Studer L)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Barzakh, A., et al. (författare)
  • Large Shape Staggering in Neutron-Deficient Bi Isotopes
  • 2021
  • Ingår i: Physical Review Letters. - 0031-9007. ; 127:19
  • Tidskriftsartikel (refereegranskat)abstract
    • The changes in the mean-square charge radius (relative to Bi209), magnetic dipole, and electric quadrupole moments of Bi187,188,189,191 were measured using the in-source resonance-ionization spectroscopy technique at ISOLDE (CERN). A large staggering in radii was found in Bi187,188,189g, manifested by a sharp radius increase for the ground state of Bi188 relative to the neighboring Bi187,189g. A large isomer shift was also observed for Bi188m. Both effects happen at the same neutron number, N=105, where the shape staggering and a similar isomer shift were observed in the mercury isotopes. Experimental results are reproduced by mean-field calculations where the ground or isomeric states were identified by the blocked quasiparticle configuration compatible with the observed spin, parity, and magnetic moment. © 2021 authors.
  •  
3.
  • Andel, B., et al. (författare)
  • β -delayed fission of isomers in Bi 188
  • 2020
  • Ingår i: Physical Review C. - 2469-9985. ; 102:1
  • Tidskriftsartikel (refereegranskat)abstract
    • β-delayed fission (βDF) decay of a low-spin (ls) and a high-spin (hs) isomer in Bi188 was studied at the ISOLDE facility at CERN. Isomer-selective laser ionization and time gating were employed to investigate each isomer separately and their βDF partial half-lives were determined: T1/2p,βDF(188Bihs)=5.6(8)×103 s and T1/2p,βDF(188Bils)=1.7(6)×103 s. This work is the first βDF study of two states in one isotope and allows the spin dependence of low-energy fission to be explored. The fission fragment mass distribution of a daughter nuclide Pb188, following the β decay of the high-spin isomer, was deduced and indicates a mixture of symmetric and asymmetric fission modes. Experimental results were compared with self-consistent mean-field calculations based on the finite-range Gogny D1M interaction. To reproduce the measured T1/2p,βDF(188Bihs), the calculated fission barrier of Pb188 had to be reduced by ≈30%. After this reduction, the measured T1/2p,βDF(188Bils) was in agreement with calculations for a few possible configurations for Bils188. Theoretical βDF probabilities for these configurations were found to be lower by a factor of 4-9 than the βDF probability of Bihs188. The fission fragment mass distribution of Pb188 was compared to the scission-point model SPY and the calculations based on the finite-range liquid-drop model. The first observation of βDF for Bi190 is also reported. © 2020 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Gadelshin, V. M., et al. (författare)
  • First laser ions at the CERN-MEDICIS facility
  • 2020
  • Ingår i: Hyperfine Interactions. - : Springer Science and Business Media LLC. - 0304-3843 .- 1572-9540. ; 241:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The CERN-MEDICIS facility aims to produce emerging medical radionuclides for the theranostics approach in nuclear medicine with mass separation of ion beams. To enhance the radioisotope yield and purity of collected samples, the resonance ionization laser ion source MELISSA was constructed, and provided the first laser ions at the facility in 2019. Several operational tests were accomplished to investigate its performance in preparation for the upcoming production of terbium radioisotopes, which are of particular interest for medical applications. © 2020, The Author(s).
  •  
9.
  • Ganat, Yosif M., et al. (författare)
  • Identification of embryonic stem cell-derived midbrain dopaminergic neurons for engraftment
  • 2012
  • Ingår i: Journal of Clinical Investigation. - 0021-9738. ; 122:8, s. 2928-2939
  • Tidskriftsartikel (refereegranskat)abstract
    • Embryonic stem cells (ESCs) represent a promising source of midbrain dopaminergic (DA) neurons for applications in Parkinson disease. However, ESC-based transplantation paradigms carry a risk of introducing inappropriate or tumorigenic cells. Cell purification before transplantation may alleviate these concerns and enable identification of the specific DA neuron stage most suitable for cell therapy. Here, we used 3 transgenic mouse ESC reporter lines to mark DA neurons at 3 stages of differentiation (early, middle, and late) following induction of differentiation using Hes5::GFP, Nurr1::GFP, and Pitx3::YFP transgenes, respectively. Transplantation of FACS-purified cells from each line resulted in DA neuron engraftment, with the mid-stage and late-stage neuron grafts being composed almost exclusively of midbrain DA neurons. Mid-stage neuron cell grafts had the greatest amount of DA neuron survival and robustly induced recovery of motor deficits in hemiparkinsonian mice. Our data suggest that the Nurrl(+) stage (middle stage) of neuronal differentiation is particularly suitable for grafting ESC-derived DA neurons. Moreover, global transcriptome analysis of progeny from each of the ESC reporter lines revealed expression of known midbrain DA neuron genes and also uncovered previously uncharacterized midbrain genes. These data demonstrate remarkable fate specificity of ESC-derived DA neurons and outline a sequential stage-specific ESC reporter line paradigm for in vivo gene discovery.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy