SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stys Peter K.) "

Sökning: WFRF:(Stys Peter K.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chu, Tak-Ho, et al. (författare)
  • Axonal and myelinic pathology in 5xFAD Alzheimers mouse spinal cord
  • 2017
  • Ingår i: PLOS ONE. - : PUBLIC LIBRARY SCIENCE. - 1932-6203. ; 12:11
  • Tidskriftsartikel (refereegranskat)abstract
    • As an extension of the brain, the spinal cord has unique properties which could allow us to gain a better understanding of CNS pathology. The brain and cord share the same cellular components, yet the latter is simpler in cytoarchitecture and connectivity. In Alzheimers research, virtually all focus is on brain pathology, however it has been shown that transgenic Alzheimers mouse models accumulate beta amyloid plaques in spinal cord, suggesting that the cord possesses the same molecular machinery and conditions for plaque formation. Here we report a spatial-temporal map of plaque load in 5xFAD mouse spinal cord. We found that plaques started to appear at 11 weeks, then exhibited a time dependent increase and differential distribution along the cord. More plaques were found in cervical than other spinal levels at all time points examined. Despite heavy plaque load at 6 months, the number of cervical motor neurons in 5xFAD mice is comparable to wild type littermates. On detailed microscopic examination, fine beta amyloid-containing and beta sheet-rich thread-like structures were found in the peri-axonal space of many axons. Importantly, these novel structures appear before any plaque deposits are visible in young mice spinal cord and they co-localize with axonal swellings at later stages, suggesting that these thread-like structures might represent the initial stages of plaque formation, and could play a role in axonal damage. Additionally, we were able to demonstrate increasing myelinopathy in aged 5xFAD mouse spinal cord using the lipid probe Nile Red with high resolution. Collectively, we found significant amyloid pathology in grey and white matter of the 5xFAD mouse spinal cord which indicates that this structure maybe a useful platform to study mechanisms of Alzheimers pathology and disease progression.
  •  
2.
  • Stepanchuk, Anastasiia, et al. (författare)
  • Early detection of prion protein aggregation with a fluorescent pentameric oligothiophene probe using spectral confocal microscopy
  • 2021
  • Ingår i: Journal of Neurochemistry. - : WILEY. - 0022-3042 .- 1471-4159. ; 156:6, s. 1033-1048
  • Tidskriftsartikel (refereegranskat)abstract
    • Misfolding of the prion protein (PrP) and templating of its pathological conformation onto cognate proteins causes a number of lethal disorders of central nervous system in humans and animals, such as Creutzfeldt-Jacob disease, chronic wasting disease and bovine spongiform encephalopathy. Structural rearrangement of PrP (c) into PrP(Sc)promotes aggregation of misfolded proteins into beta-sheet-rich fibrils, which can be visualized by conformationally sensitive fluorescent probes. Early detection of prion misfolding and deposition might provide useful insights into its pathophysiology. Pentameric formyl thiophene acetic acid (pFTAA) is a novel amyloid probe that was shown to sensitively detect various misfolded proteins, including PrP. Here, we compared sensitivity of pFTAA staining and spectral microscopy with conventional methods of prion detection in mouse brains infected with mouse-adapted 22L prions. pFTAA bound to prion deposits in mouse brain sections exhibited a red-shifted fluorescence emission spectrum, which quantitatively increased with disease progression. Small prion deposits were detected as early as 50 days post-inoculation, well before appearance of clinical signs. Moreover, we detected significant spectral shifts in the greater brain parenchyma as early as 25 days post-inoculation, rivaling the most sensitive conventional method (real-time quaking-induced conversion). These results showcase the potential of pFTAA staining combined with spectral imaging for screening of prion-infected tissue. Not only does this method have comparable sensitivity to established techniques, it is faster and technically simpler. Finally, this readout provides valuable information about the spatial distribution of prion aggregates across tissue in the earliest stages of infection, potentially providing valuable pathophysiological insight into prion transmission.
  •  
3.
  • Black, Stefanie A G, et al. (författare)
  • Diagnosing Alzheimer's Disease from Circulating Blood Leukocytes Using a Fluorescent Amyloid Probe.
  • 2022
  • Ingår i: Journal of Alzheimer's disease : JAD. - 1875-8908. ; 85:4, s. 1721-1734
  • Tidskriftsartikel (refereegranskat)abstract
    • Toxic amyloid-β (Aβ) peptides aggregate into higher molecular weight assemblies and accumulate not only in the extracellular space, but also in the walls of blood vessels in the brain, increasing their permeability, and promoting immune cell migration and activation. Given the prominent role of the immune system, phagocytic blood cells may contact pathological brain materials.To develop a novel method for early Alzheimer's disease (AD) detection, we used blood leukocytes, that could act as "sentinels" after trafficking through the brain microvasculature, to detect pathological amyloid by labelling with a conformationally-sensitive fluorescent amyloid probe and imaging with confocal spectral microscopy.Formalin-fixed peripheral blood mononuclear cells (PBMCs) from cognitively healthy control (HC) subjects, mild cognitive impairment (MCI) and AD patients were stained with the fluorescent amyloid probe K114, and imaged. Results were validated against cerebrospinal fluid (CSF) biomarkers and clinical diagnosis.K114-labeled leukocytes exhibited distinctive fluorescent spectral signatures in MCI/AD subjects. Comparing subjects with single CSF biomarker-positive AD/MCI to negative controls, our technique yielded modest AUCs, which improved to the 0.90 range when only MCI subjects were included in order to measure performance in an early disease state. Combining CSF Aβ 42 and t-Tau metrics further improved the AUC to 0.93.Our method holds promise for sensitive detection of AD-related protein misfolding in circulating leukocytes, particularly in the early stages of disease.
  •  
4.
  • Suuronen, Erik J., et al. (författare)
  • Functional innervation in tissue engineered models for in vitro study and testing purposes
  • 2004
  • Ingår i: Toxicological Sciences. - : Oxford University Press (OUP). - 1096-6080 .- 1096-0929. ; 82:2, s. 525-533
  • Tidskriftsartikel (refereegranskat)abstract
    • The biotechnology industry is rapidly expanding and the emerging field of tissue engineering is projected to have a high impact in the near future. Recently the field of cellular, drug, and prosthetic delivery has melded with the field of tissue engineering to make simulated tissues. In addition to their roles as tissue substitutes for transplantation, these simulated tissues may provide more accurate models and environments for toxicology testing and the study of peripheral nerves. The current study demonstrates the importance of innervation, in general, for the function of engineered tissues. We observe that the presence of nerves in a tissue engineered (TE) human cornea model enhances the growth of the epithelium and the formation of its protective mucin layer. Innervation also confers protection to the epithelium from chemical insult, as determined by the level of post-treatment epithelial cell death. We demonstrate differential responses of the nerves to chemical stimuli by changes in intracellular sodium as measured by 2-photon microscopy. The 2-photon imaging techniques also allow for the visualization and study of the fine sensory axon fibers within the 3-dimensional tissue. This work demonstrates a role for innervation in the protective quality and function of the engineered tissue, and the potential to use the nerves themselves as indicators of the severity of an insult. These results are important to consider for the development of any optimized TE models for in vitro study and testing purposes.
  •  
5.
  • Suuronen, Erik J., et al. (författare)
  • Innervated human corneal equivalents as in vitro models for nerve-target cell interactions
  • 2003
  • Ingår i: The FASEB Journal. - : Federation of American Society of Experimental Biology (FASEB). - 0892-6638 .- 1530-6860. ; 17, s. 170-
  • Tidskriftsartikel (refereegranskat)abstract
    • A sensory nerve supply is crucial for optimal tissue function. However, the mechanisms for successful innervation and the signaling pathways between nerves and their target tissue are not fully understood. Engineered tissue substitutes can provide controllable environments in which to study tissue innervation. We have therefore engineered human corneal substitutes that promote nerve in-growth in a pattern similar to in vivo re-innervation. We demonstrate that these nerves (a) are morphologically equivalent to natural corneal nerves; (b) make appropriate contact with target cells; (c) can generate action potentials; (d) respond to chemical and physical stimuli; and (e) play an important role in the overall functioning of the bioengineered tissue. This model can be used for studying the more general topics of nerve ingrowth or regeneration and the interaction between nerves and their target cells and, more specifically, the role of nerves in corneal function. This model could also be used as an in vitro alternative to animals for safety and efficacy testing of chemicals and drugs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy