SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Su Yingtao) "

Sökning: WFRF:(Su Yingtao)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bahram, Fuad, et al. (författare)
  • Interferon-γ-induced p27KIP1 binds to and targets MYC for proteasome-mediated degradation.
  • 2016
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 7:3, s. 2837-2854
  • Tidskriftsartikel (refereegranskat)abstract
    • The Myc oncoprotein is tightly regulated at multiple levels including ubiquitin-mediated protein turnover. We recently demonstrated that inhibition of Cdk2-mediated phosphorylation of Myc at Ser-62 pharmacologically or through interferon (IFN)-γ-induced expression of p27Kip1 (p27) repressed Myc's activity to suppress cellular senescence and differentiation. In this study we identified an additional activity of p27 to interfere with Myc independent of Ser-62 phosphorylation. p27 is required and sufficient for IFN-γ-induced turnover of Myc. p27 interacted with Myc in the nucleus involving the C-termini of the two proteins, including Myc box 4 of Myc. The C-terminus but not the Cdk2 binding fragment of p27 was sufficient for inducing Myc degradation. Protein expression data of The Cancer Genome Atlas breast invasive carcinoma set revealed significantly lower Myc protein levels in tumors with highly expressed p27 lacking phosphorylation at Thr-157 - a marker for active p27 localized in the nucleus. Further, these conditions correlated with favorable tumor stage and patient outcome. This novel regulation of Myc by IFN-γ/p27KIP1 potentially offers new possibilities for therapeutic intervention in tumors with deregulated Myc.
  •  
2.
  • Cetinkaya, Cihan, et al. (författare)
  • Combined IFN-gamma and retinoic acid treatment targets the N-Myc/Max/Mad1 network resulting in repression of N-Myc target genes in MYCN-amplified neuroblastoma cells
  • 2007
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 6:10, s. 2634-2641
  • Tidskriftsartikel (refereegranskat)abstract
    • The MYCN protooncogene is involved in the control of cell proliferation, differentiation, and survival of neuroblasts. Deregulation of MYCN by gene amplification contributes to neuroblastoma development and is strongly correlated to advanced disease and poor outcome, emphasizing the urge for new therapeutic strategies targeting MYCN function. The transcription factor N-Myc, encoded by MYCN, regulates numerous genes together with its partner Max, which also functions as a cofactor for the Mad/Mnt family of Myc antagonists/transcriptional repressors. We and others have previously reported that IFN-gamma synergistically potentiates retinoic acid (RA)induced sympathetic differentiation and growth inhibition in neuroblastoma cells. This study shows that combined treatment of MYCN-amplified neuroblastorna cells with RA+IFN-gamma down-regulates N-Myc protein expression through increased protein turnover, up-regulates Mad1 mRNA and protein, and reduces N-Myc/Max heteroclimerization. This results in a shift of occupancy at the ornithine decarboxylase N-Myc/Mad1 target promoter in vivo from N-Myc/Max to Madl/Max predominance, correlating with histone H4 deacetylation, indicative of a chromatin structure typical of a transcriptionally repressed state. This is further supported by data showing that RA + IFN-gamma treatment strongly represses expression of N-Myc/Mad1 target genes ornithine decarboxylase and hTERT. Our results suggest that combined IFN-gamma and RA signaling can form a basis for new therapeutic strategies targeting N-Myc function for patients with high-risk, MYCN-amplified neuroblastoma.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy