SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Subramani Durai B) "

Sökning: WFRF:(Subramani Durai B)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • van der Post, Sjoerd, 1981, et al. (författare)
  • Site-specific O-glycosylation on the MUC2 mucin protein inhibits cleavage by the Porphyromonas gingivalis secreted cysteine protease (RgpB).
  • 2013
  • Ingår i: The Journal of biological chemistry. - 1083-351X. ; 288:20, s. 14636-46
  • Tidskriftsartikel (refereegranskat)abstract
    • The colonic epithelial surface is protected by an inner mucus layer that the commensal microflora cannot penetrate. We previously demonstrated that Entamoeba histolytica secretes a protease capable of dissolving this layer that is required for parasite penetration. Here, we asked whether there are bacteria that can secrete similar proteases. We screened bacterial culture supernatants for such activity using recombinant fragments of the MUC2 mucin, the major structural component, and the only gel-forming mucin in the colonic mucus. MUC2 has two central heavily O-glycosylated mucin domains that are protease-resistant and has cysteine-rich N and C termini responsible for polymerization. Culture supernatants of Porphyromonas gingivalis, a bacterium that secretes proteases responsible for periodontitis, cleaved the MUC2 C-terminal region, whereas the N-terminal region was unaffected. The active enzyme was isolated and identified as Arg-gingipain B (RgpB). Two cleavage sites were localized to IR↓TT and NR↓QA. IR↓TT cleavage will disrupt the MUC2 polymers. Because this site has two potential O-glycosylation sites, we tested whether recombinant GalNAc-transferases (GalNAc-Ts) could glycosylate a synthetic peptide covering the IRTT sequence. Only GalNAc-T3 was able to glycosylate the second Thr in IRTT, rendering the sequence resistant to cleavage by RgpB. Furthermore, when GalNAc-T3 was expressed in CHO cells expressing the MUC2 C terminus, the second threonine was glycosylated, and the protein became resistant to RgpB cleavage. These findings suggest that bacteria can produce proteases capable of dissolving the inner protective mucus layer by specific cleavages in the MUC2 mucin and that this cleavage can be modulated by site-specific O-glycosylation.
  •  
2.
  • Johansson, Malin E V, 1971, et al. (författare)
  • Composition and functional role of the mucus layers in the intestine.
  • 2011
  • Ingår i: Cellular and Molecular Life Sciences. - : Springer Science and Business Media LLC. - 1420-682X .- 1420-9071. ; 68, s. 3635-3641
  • Forskningsöversikt (refereegranskat)abstract
    • In discussions on intestinal protection, the protective capacity of mucus has not been very much considered. The progress in the last years in understanding the molecular nature of mucins, the main building blocks of mucus, has, however, changed this. The intestinal enterocytes have their apical surfaces covered by transmembrane mucins and the whole intestinal surface is further covered by mucus, built around the gel-forming mucin MUC2. The mucus of the small intestine has only one layer, whereas the large intestine has a two-layered mucus where the inner, attached layer has a protective function for the intestine, as it is impermeable to the luminal bacteria.
  •  
3.
  • Subramani, Durai B, et al. (författare)
  • Lactobacillus and Bifidobacterium species do not secrete protease that cleaves the MUC2 mucin which organises the colon mucus.
  • 2010
  • Ingår i: Beneficial microbes. - 1876-2891. ; 1:4, s. 343-50
  • Tidskriftsartikel (refereegranskat)abstract
    • The colon epithelium is covered by two layers of mucus built around the MUC2 mucin. An inner dense and attached mucus layer does not allow bacteria to penetrate, thus keeping the epithelial cell surface free from bacteria. An outer loose mucus layer is the habitat for the commensal bacterial microbiota. The inner mucus layer is renewed from the epithelial side and gets converted into the outer layer due to proteolytic cleavages by host proteases. We have now analysed if potential probiotic bacteria, namely Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus bulgaricus and Bifidobacterium lactis, can secrete protease that cleaves the MUC2 mucin. We found that none of the potential probiotic bacteria Lactobacillus and Bifidobacterium could cleave the MUC2 core protein in the form of recombinant MUC2 N and C-termini although they secreted active proteases. This was in contrast to crude mixtures of oral and faecal bacteria that cleaved the MUC2 mucin. This observation further supports the view that these potential probiotic bacteria are of no harm to the host, as these bacteria cannot disrupt the mucin organised mucus as long as they are covered by glycans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy