SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sugunan Abhilash Dr.) "

Sökning: WFRF:(Sugunan Abhilash Dr.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhao, Wei (författare)
  • Aqueous graphene dispersions for paper packaging
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Graphene is widely touted as the thinnest and the most versatile material available. As an atomically thin layer of carbon atoms arranged in a hexagonal configuration, graphene has a combination of technologically important properties, such as thermal and electrical conductivity, mechanical strength, and impermeability to gases. From an industrial perspective on applications, water as a dispersing media for graphene offers safer handling and environmental benefits compared with conventional organic solvents. However, the high surface tension of water and the attractive forces between graphene surfaces drive the sheets to aggregation. Although surfactants have been an important stepping stone in the advancement of aqueous graphene dispersions, these surface-active molecules are often needed in excess and have adverse effects on coatings during film formation. These challenges limit the industrial relevance of graphene as an effective barrier in composites. In general, gas barriers against both oxygen and water vapour, made from a single coating formulation, is seemingly a holy grail for the packaging industry. In this thesis work, the aim was to gain a fundamental understanding of aqueous graphene dispersions for gas barriers used in paper packaging. Biobased materials were systematically investigated as dispersing agents for graphene based on dispersing conditions and functional barrier performance. Flavin mononucleotide (FMN), a food additive, dispersed graphene using a relatively low amount of FMN and showed intriguing spectroscopic signatures of π-π interactions with graphene. Starch nanoparticles (SNPs) realised concentrated and stable aqueous graphene dispersions for composite films. The SNP-stabilized graphene sheets in starch films lowered the gas permeability of both oxygen and water vapour simultaneously by over 70% under all the conditions tested. In general, a combined gas barrier performance is unusual for both bioplastics and common petrochemical-based plastics used in the packaging industry. Motivated by the graphene network leading to the extraordinary barrier performance, the aqueous SNP-graphene dispersion was modified for inkjet printing. The printed patterns were flexible and electrically conductive in the order of 104 S m-1 that is on par with the highest reported values in the literature. These surfactant-free aqueous SNP-graphene dispersions have the potential and versatility for paper-based gas barriers with integrated electronics. Multifunctional composite films made from these dispersions, when optimized, could become competitive with commercial plastics, and meet the current and future demands of the packaging industry.
  •  
2.
  • Zhao, Yichen (författare)
  • Semiconducting Polymer Nanofibers and Quantum Dot based Nanocomposites for Optoelectronic Applications
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Nanostructured materials have attracted a broad interest in various technologies such as optoelectronics. In this thesis, nanostructured semiconductor nanocrystals, including inorganic and organic materials, were fabricated by solution based methods. The reaction conditions were optimized to control the size and morphology of the obtained nanocrystals. The optical and photoelectric properties of nanocrystals were evaluated for potential optoelectronic applications.Colloidal CdSe quantum dots (QDs) were synthesized via thermolysis method and layers of CdS was further grown on the core CdSe QDs to form a core-shell heterostructure quantum dots (HQDs). The optical properties of HQDs were evaluated and showed the characteristics of quasi-type-II alignment of energy levels, which has potential for excitonic solar cell (XSC) application.Nanofibers of the semiconducting polymer poly-(3-hexylthiophene) (P3HT) were synthesized via a modified whisker method. In order to control the size (both the length and the diameter) of nanofibers, we systematically studied the ratio between mixture solvents and the solute concentration. In addition, the degradation processes of P3HT nanofibers on different substrates under various environments were investigated. We found that the degradation of P3HT nanofibers can be effectively suppressed by using the substrate of higher conductivity. A nanocomposite consisting of HQDs and P3HT nanofibers was fabricated and its photoelectric properties were evaluated by I-V measurements. A ‘turn-on’ voltage was found and revealed the localization of excited holes within the HQDs, which confirmed the quasi-type-II alignment between core and shell energy levels.In addition, we aligned the P3HT nanofibers by applying the external electric field. Alternating current (AC) and direct current (DC) induced alignments of P3HT nanofibers were investigated respectively to study the effects of different electric fields on the alignment behavior. It was determined that the AC electric field allowed a better alignment of nanofibers. Moreover, two different lengths of P3HT nanofibers were aligned and their absorption spectra were measured. Under polarized light beams, we observed a better aligned pattern in the case of longer nanofibers, shown as a higher dichroic ratio calculated from optical absorption spectra. These aligned nanofibers may find applications in optoelectronic devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy