SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sukhrobov Parviz) "

Sökning: WFRF:(Sukhrobov Parviz)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Qin, Danfeng, et al. (författare)
  • Three-dimensional carbon nanofiber derived from bacterial cellulose for use in a Nafion matrix on a glassy carbon electrode for simultaneous voltammetric determination of trace levels of Cd(II) and Pb(II)
  • 2017
  • Ingår i: Microchimica Acta. - : SPRINGER WIEN. - 0026-3672 .- 1436-5073. ; 184:8, s. 2759-2766
  • Tidskriftsartikel (refereegranskat)abstract
    • The authors describe the preparation of carbon nanofibers (CNFs) with a three-dimensional network structure by one-step carbonization of bacterial cellulose at 800 degrees C. The 3D CNFs wrapped with Nafion polymer were cast on a glassy carbon electrode (GCE) which then enables sensitive detection of Cd(II) and Pb(II). Under optimized conditions and at typical stripping peaks of around -0.80 and -0.55 V (vs Ag/AgCl), the electrode exhibits high sensitivity and a wide analytical range of 2-100 mu g.L-1 for both Cd(II) and Pb(II). The detection limits are 0.38 mu g.L-1 for Cd(II) and 0.33 mu g.L-1 for Pb(II), respectively. The modified GCE was successfully employed to the determination of trace amounts of Cd(II) and Pb(II) in both tap water and waste water.
  •  
2.
  • Sukhrobov, Parviz, et al. (författare)
  • A New Non-Enzymatic Amperometric Sensor Based on Nickel Decorated ZIF-8 Derived Carbon Nanoframe for the Glucose Determination in Blood Samples
  • 2018
  • Ingår i: International Journal of Electrochemical Science. - : ESG. - 1452-3981. ; 13:7, s. 6550-6564
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study demonstrated a highly sensitive non-enzymatic glucose biosensor in real blood samples based on simple evaluated nickel deposited on N-doped porous carbon modified glassy carbon electrode (Ni/NPC/GCE) by applying electrochemical deposition method. The prepared material initially were characterized by cyclic voltammetry, the morphology structure of the as-prepared samples was observed by SEM, and composition, crystals structure of Ni/NPC were identified by SEM mapping and EDS tests. The Ni/NPC/GCE compared with NPC/GCE and NiNPs/GCE performed the best electrocatalytic behavior towards oxidation of glucose in 0.1 M KOH medium. By applied potential of +0.6 V Ni/NPC/GCE showed very high sensitivity of 3753.78 mu AmM(-1)cm(-2) in linear range of 1-7940 mu M with the correlation coefficient of R-2=0.995. The linear ranges get views above the concentration up to 7940 mu M with the detection limit of 0.3 mu M (S/N= 3). Amperometric time responses of prepared electrode towards different glucose concentrations are 0.8-1.3s. Finally, several positive characteristics such as very high sensitivity, weak working potential, nice anti-interference properties, long stability, good selectivity, and comparison with some other non-enzymatic sensors Ni/NPC/GCE executed high sensitivity, low detection limit and wide linear range to glucose sensing, thus the selected electrode is supplying for future glucose level determination design.
  •  
3.
  • Sukhrobov, Parviz, et al. (författare)
  • Nonenzymatic Glucose Biosensor Based on NiNPs/Nafion/Graphene Film for Direct Glucose Determination in Human Serum
  • 2018
  • Ingår i: NANO. - 1793-2920 .- 1793-7094. ; 13:7
  • Tidskriftsartikel (refereegranskat)abstract
    • This study describes a type of novel nickel nanoparticles (NiNPs) decorated on Nafiongraphene composite film by using the electrochemical deposition method. It was used to fabricate electrochemical biosensors for sensitive nonenzymatic glucose detection. Compared with the Nafion-graphene film and NiNPs-modified glassy carbon electrode (NiNPs-GCE), the NiNPs/Nafion/graphene/GCE showed the best electrocatalytic activity towards glucose oxidation in alkaline medium. The NiNPs/Nafion/graphene/GCE at an applied potential of +0.55 V in a linear range of 1-200 mu M presented a high sensitivity of 3437.25 mu A center dot mM(-1) cm(-2) with coefficient of correlation R-2 = 0.999; and in a linear range of 200-10800 mu M it performed the best sensitivity of 2848.6 mu A center dot mM(-1) cm(-2) with coefficient of correlation R-2 = 0.995 towards glucose oxidation. For a concentration up to 200 mu M, a linear range was obtained with a limit of detection of 0.6 mu M (signal to noise = 3) and as much as 10 800 mu M with a limit of detection of 0.82 mu M (signal to noise = 3). The time of responses was about 1-1.5 s with the addition of 0.1-1 mM glucose. In addition, NiNPs/Nafion/graphene/GCE also has a high anti-interference ability toward common oxidative interfering species, such as uric acid, ascorbic acid and dopamine. More importantly, NiNPs/Nafion/graphene/GCE was successfully used for the determination of glucose concentration in human serum samples in comparison with a local hospital. The NiNPs/Nafion/graphene/GCE exhibited high sensitivity, low working potential, good stability, excellent electrical properties, enhanced selectivity and fast amperometric responses to glucose oxidation. Thus, as a nonenzymatic sensor, it is promising for future glucose determination development.
  •  
4.
  • Sukhrobov, Parviz, et al. (författare)
  • Rapid Microwave-Assisted Synthesis of Copper Decorated Carbon Black Nanocomposite for Non-Enzyme Glucose Sensing in Human Blood
  • 2019
  • Ingår i: Journal of the Electrochemical Society. - : Electrochemical Society. - 0013-4651 .- 1945-7111. ; 166:13, s. B1238-B1244
  • Tidskriftsartikel (refereegranskat)abstract
    • The current research performs the novelty fabricated of non-enzymatic biosensor based on copper nanoparticles decorated carbon black nanocomposite modified glassy carbon electrode (Cu/DCB/GCE) by using the microwave method. The prepared nanomaterial was applied for glucose determination in biological fluids and human serum samples. The techniques of SEM, TEM, XPS, XRD, EDS and mapping tests were selected for the morphological, compositions and crystal structure characterizations of the fabricated nanocomposite. In comparison with other electrodes based on metal decorated carbon black, the Cu/DCB/GCE demonstrated the best electrocatalytic property toward glucose oxidation in 0.1 M KOH electrolyte. Cu/DCB/GCE under the optimal potential of +0.5 V in a linear range from 0.5 up to 7000 mu M with a detection limit of 0.1 mu M (S/N=3), the coefficient of correlation R-2=0.999, performed significant high sensitivity of 1595 mu A mM(-1) cm(-2). Rapid amperometric responses of the prepared biosensor in short time with 0.8-2 s were observed by addition of different glucose concentrations in alkaline solution. Modified Cu/DCB/GCE exhibited the best anti-interference property against blood cells and some blood co-existence molecules such as dopamine, uric acid, ascorbic acid, albumin, and globulin. Most importantly, Cu/DCB/GCE biosensor was used for glucose level determination in human blood serum samples. Due to the attractable structure and properties of the fabricated biosensor, it can be suggested for the future development of glucose detection design.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy