SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sumby Christopher) "

Sökning: WFRF:(Sumby Christopher)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jevric, Martyn, 1973, et al. (författare)
  • Norbornadiene-Based Photoswitches with Exceptional Combination of Solar Spectrum Match and Long-Term Energy Storage
  • 2018
  • Ingår i: Chemistry - A European Journal. - : Wiley. - 1521-3765 .- 0947-6539. ; 24:49, s. 12767-12772
  • Tidskriftsartikel (refereegranskat)abstract
    • Norbornadiene-quadricyclane (NBD-QC) photoswitches are candidates for applications in solar thermal energy storage. Functionally, they rely on an intramolecular [2+2] cycloaddition reaction, which couples the S0 landscape on the NBD side to the S1 landscape on the QC side of the reaction and vice-versa. This commonly results in an unfavourable correlation between the first absorption maximum and the barrier for thermal back-conversion. This work demonstrates that this correlation can be counteracted by using steric repulsion to hamper the rotational motion of the side groups along the back-conversion path. It is shown that this modification reduces the correlation between the effective back-conversion barrier and the first absorption maximum and also increases the back-conversion entropy. The resulting molecules exhibit exceptionally long half-lives for their metastable forms without significantly affecting other properties, most notably solar spectrum match and storage density.
  •  
2.
  • Jevric, Martyn, 1973, et al. (författare)
  • Tuning Molecular Solar Thermal Properties by Modification of a Promising Norbornadiene Photoswitch
  • 2019
  • Ingår i: European Journal of Organic Chemistry. - : Wiley. - 1099-0690 .- 1434-193X. ; 2019:13, s. 2354-2361
  • Tidskriftsartikel (refereegranskat)abstract
    • Carefully targeted modifications to the norbornadiene-quadricyclane couple should give molecules with great potential for solar energy storage. Here we report the synthesis of derivatives of a well-studied compound, 2-cyano-3-anisyl norbornadiene (NBD5). The conjugation was extended by conversion of the nitrile into acrylonitrile and acrylate derivatives over two steps. Despite red-shifting the absorbance properties, the metastable quadricyclanes exhibited extremely short lifetimes. Meanwhile, treatment of NBD5 with acetyl halides in the presence of aluminum trihalides led to the formation of 7-acetyl norbornenes through a Wagner–Meerwein rearrangement. Subsequent transformations made it possible to synthesise norbornadienes with varying degrees of steric bulk at the 7-position of the molecular scaffold. It was found that the bulkier this group was, the more stable the quadricyclane form. This reaction sequence allows for the synthesis of norbornadiene derivatives which are more suited to molecular solar thermal applications in domestic heating despite providing a slightly lower energy density.
  •  
3.
  • Petersen, Anne U., et al. (författare)
  • Solar Energy Storage by Molecular Norbornadiene–Quadricyclane Photoswitches: Polymer Film Devices
  • 2019
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844 .- 2198-3844. ; 6:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Devices that can capture and convert sunlight into stored chemical energy are attractive candidates for future energy technologies. A general challenge is to combine efficient solar energy capture with high energy densities and energy storage time into a processable composite for device application. Here, norbornadiene (NBD)–quadricyclane (QC) molecular photoswitches are embedded into polymer matrices, with possible applications in energy storing coatings. The NBD–QC photoswitches that are capable of absorbing sunlight with estimated solar energy storage efficiencies of up to 3.8% combined with attractive energy storage densities of up to 0.48 MJ kg −1 . The combination of donor and acceptor units leads to an improved solar spectrum match with an onset of absorption of up to 529 nm and a lifetime (t 1/2 ) of up to 10 months. The NBD–QC systems with properties matched to a daily energy storage cycle are further investigated in the solid state by embedding the molecules into a series of polymer matrices revealing that polystyrene is the preferred choice of matrix. These polymer devices, which can absorb sunlight and over a daily cycle release the energy as heat, are investigated for their cyclability, showing multicycle reusability with limited degradation that might allow them to be applied as window laminates.
  •  
4.
  • Schuschke, Christian, et al. (författare)
  • Solar energy storage at an atomically defined organic-oxide hybrid interface
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular photoswitches provide an extremely simple solution for solar energy conversion and storage. To convert stored energy to electricity, however, the photoswitch has to be coupled to a semiconducting electrode. In this work, we report on the assembly of an operational solar-energy-storing organic-oxide hybrid interface, which consists of a tailor-made molecular photoswitch and an atomically-defined semiconducting oxide film. The synthesized norbornadiene derivative 2-cyano-3-(4-carboxyphenyl)norbornadiene (CNBD) was anchored to a well-ordered Co3O4(111) surface by physical vapor deposition in ultrahigh vacuum. Using a photochemical infrared reflection absorption spectroscopy experiment, we demonstrate that the anchored CNBD monolayer remains operational, i.e., can be photo-converted to its energy-rich counterpart 2-cyano-3-(4-carboxyphenyl)quadricyclane (CQC). We show that the activation barrier for energy release remains unaffected by the anchoring reaction and the anchored photoswitch can be charged and discharged with high reversibility. Our atomically-defined solar-energy-storing model interface enables detailed studies of energy conversion processes at organic/oxide hybrid interfaces.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy