SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sun Licheng 1962 ) "

Sökning: WFRF:(Sun Licheng 1962 )

  • Resultat 1-10 av 261
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Daniel, Quentin, et al. (författare)
  • Water Oxidation Initiated by In Situ Dimerization of the Molecular Ru(pdc) Catalyst
  • 2018
  • Ingår i: ACS Catalysis. - : AMER CHEMICAL SOC. - 2155-5435. ; 8:5, s. 4375-4382
  • Tidskriftsartikel (refereegranskat)abstract
    • The mononuclear ruthenium complex [Ru(pdc)L-3] (H(2)pdc = 2,6-pyridinedicarboxylic acid, L = N-heterocycles such as 4-picoline) has previously shown promising catalytic efficiency toward water oxidation, both in homogeneous solutions and anchored on electrode surfaces. However, the detailed water oxidation mechanism catalyzed by this type of complex has remained unclear. In order to deepen understanding of this type of catalyst, in the present study, [Ru(pdc)(py)(3)] (py = pyridine) has been synthesized, and the detailed catalytic mechanism has been studied by electrochemistry, UV-vis, NMR, MS, and X-ray crystallography. Interestingly, it was found that once having reached the Ru-IV state, this complex promptly formed a stable ruthenium dimer [Ru-III(pdc)(py)(2)-O-Ru-IV(pdc)(py)(2)](+). Further investigations suggested that the present dimer, after one pyridine ligand exchange with water to form [Ru-III(pdc)(py)(2)-O-Ru-IV(pdc)(py)(H2O)](+), was the true active species to catalyze water oxidation in homogeneous solutions.
  •  
2.
  • Hou, Jungang, et al. (författare)
  • Active Sites Intercalated Ultrathin Carbon Sheath on Nanowire Arrays as Integrated Core-Shell Architecture : Highly Efficient and Durable Electrocatalysts for Overall Water Splitting
  • 2017
  • Ingår i: Small. - : Wiley-VCH Verlagsgesellschaft. - 1613-6810 .- 1613-6829. ; 13:46
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of active bifunctional electrocatalysts with low cost and earth-abundance toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remains a great challenge for overall water splitting. Herein, metallic Ni4Mo nanoalloys are firstly implanted on the surface of NiMoOx nanowires array (NiMo/NiMoOx) as metal/metal oxides hybrid. Inspired by the superiority of carbon conductivity, an ultrathin nitrogen-doped carbon sheath intercalated NiMo/NiMoOx (NC/NiMo/NiMoOx) nanowires as integrated core-shell architecture are constructed. The integrated NC/NiMo/NiMoOx array exhibits an overpotential of 29 mV at 10 mA cm(-2) and a low Tafel slope of 46 mV dec(-1) for HER due to the abundant active sites, fast electron transport, low charge-transfer resistance, unique architectural structure and synergistic effect of carbon sheath, nanoalloys, and oxides. Moreover, as OER catalysts, the NC/NiMo/NiMoOx hybrids require an overpotential of 284 mV at 10 mA cm(-2). More importantly, the NC/NiMo/NiMoOx array as a highly active and stable electrocatalyst approaches approximate to 10 mA cm(-2) at a voltage of 1.57 V, opening an avenue to the rational design and fabrication of the promising electrode materials with architecture structures toward the electrochemical energy storage and conversion.
  •  
3.
  • Hou, Jungang, et al. (författare)
  • Atomically Thin Mesoporous In2O3-x/In2S3 Lateral Heterostructures Enabling Robust Broadband-Light Photo-Electrochemical Water Splitting
  • 2018
  • Ingår i: Advanced Energy Materials. - : Wiley-VCH Verlagsgesellschaft. - 1614-6832 .- 1614-6840. ; 8:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Atomically thin 2D heterostructures have opened new realms in electronic and optoelectronic devices. Herein, 2D lateral heterostructures of mesoporous In2O3-x/In2S3 atomic layers are synthesized through the in situ oxidation of In2S3 atomic layers by an oxygen plasma-induced strategy. Based on experimental observations and theoretical calculations, the prolonged charge carrier lifetime and increased electron density reveal the efficient photoexcited carrier transport and separation in the In2O3-x/In2S3 layers by interfacial bonding at the atomic level. As expected, the synergistic structural and electronic modulations of the In2O3-x/In2S3 layers generate a photocurrent of 1.28 mA cm(-2) at 1.23 V versus a reversible hydrogen electrode, nearly 21 and 79 times higher than those of the In2S3 atomic layers and bulk counterpart, respectively. Due to the large surface area, abundant active sites, broadband-light harvesting ability, and effective charge transport pathways, the In2O3-x/In2S3 layers build efficient pathways for photoexcited charge in the 2D semiconductive channels, expediting charge transport and kinetic processes and enhancing the robust broadband-light photo-electrochemical water splitting performance. This work paves new avenues for the exploration and design of atomically thin 2D lateral heterostructures toward robust photo-electrochemical applications and solar energy utilization.
  •  
4.
  • Hou, Jungang, et al. (författare)
  • Electrical Behavior and Electron Transfer Modulation of Nickel-Copper Nanoalloys Confined in Nickel-Copper Nitrides Nanowires Array Encapsulated in Nitrogen-Doped Carbon Framework as Robust Bifunctional Electrocatalyst for Overall Water Splitting
  • 2018
  • Ingår i: Advanced Functional Materials. - : Wiley-VCH Verlagsgesellschaft. - 1616-301X .- 1616-3028. ; 28:37
  • Tidskriftsartikel (refereegranskat)abstract
    • Probing robust electrocatalysts for overall water splitting is vital in energy conversion. However, the catalytic efficiency of reported catalysts is still limited by few active sites, low conductivity, and/or discrete electron transport. Herein, bimetallic nickel-copper (NiCu) nanoalloys confined in mesoporous nickel-copper nitride (NiCuN) nanowires array encapsulated in nitrogen-doped carbon (NC) framework (NC-NiCu-NiCuN) is constructed by carbonization-/nitridation-induced in situ growth strategies. The in situ coupling of NiCu nanoalloys, NiCuN, and carbon layers through dual modulation of electrical behavior and electron transfer is not only beneficial to continuous electron transfer throughout the whole system, but also promotes the enhancement of electrical conductivity and the accessibility of active sites. Owing to strong synergetic coupling effect, such NC-NiCu-NiCuN electrocatalyst exhibits the best hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance with a current density of 10 mA cm(-2) at low overpotentials of 93 mV for HER and 232 mV for OER, respectively. As expected, a two-electrode cell using NC-NiCu-NiCuN is constructed to deliver 10 mA cm(-2) water-splitting current at low cell voltage of 1.56 V with remarkable durability over 50 h. This work serves as a promising platform to explore the design and synthesis of robust bifunctional electrocatalyst for overall water splitting.
  •  
5.
  • Hou, Jungang, et al. (författare)
  • Graphene Dots Embedded Phosphide Nanosheet-Assembled Tubular Arrays for Efficient and Stable Overall Water Splitting
  • 2017
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 9:29, s. 24600-24607
  • Tidskriftsartikel (refereegranskat)abstract
    • Bifunctional electrocatalysts are highly desired for overall water splitting. Herein, the design and fabrication of three-dimensional (3D) hierarchical earth-abundant transition bimetallic phosphide arrays constructed by one-dimensional tubular array that was derived from assembling two-dimensional nanosheet framework has been reported by tailoring the Co/Ni ratio and tunable morphologies, and zero-dimensional (0D) graphene dots were embedded on Co-Ni phosphide matrix to construct 0D/2D tubular array as a highly efficient electrode in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). On the basis of advanced merits, such as the high surface-active sites, well-dispersed graphene dots, and enhanced electron transfer capacity as well as the confinement effect of the graphene dots on the nanosheets, the integrated GDs/Co0.8Ni0.2P tubular arrays as anode and cathode exhibit excellent OER and HER performance. By use of GDs/Co0.8Ni0.2 arrays in the two-electrode setup of the device, a remarkable electrocatalytic performance for full water splitting has been achieved with a high current density of 10 mA cm-2 at 1.54 V and outstanding long-term operation stability in an alkaline environment, indicating a promising system based on nonprecious-metal electrocatalysts toward potential practical devices of overall water splitting.
  •  
6.
  • Hou, Jungang, et al. (författare)
  • Inorganic Colloidal Perovskite Quantum Dots for Robust Solar CO2 Reduction
  • 2017
  • Ingår i: Chemistry - A European Journal. - : Wiley-VCH Verlagsgesellschaft. - 0947-6539 .- 1521-3765. ; 23:40, s. 9481-9485
  • Tidskriftsartikel (refereegranskat)abstract
    • Inorganic perovskite quantum dots as optoelectronic materials have attracted enormous attention in light-harvesting and emitting devices. However, photocatalytic conversion based on inorganic perovskite halides has not been reported. Here, we have synthesized colloidal quantum dots (QDs, 3-12 nm) of cesium lead halide perovskites (CsPbBr3) as a new type of photocatalytic material. The band gap energies and photoluminescence (PL) spectra are tunable over the visible spectral region according to quantum size effects on an atomic scale. The increased carrier lifetime revealed by time-resolved PL spectra, indicates the efficient electron-hole separation and transfer. As expected, the CsPbBr3 QDs with high selectivity of greater than 99% achieve an efficient yield of 20.9 mmolg(-1) towards solar CO2 reduction. This work has opened a new avenue for inorganic colloidal perovskite materials as efficient photocatalysts to convert CO2 into valuable fuels.
  •  
7.
  • Hou, Jungang, et al. (författare)
  • Promoting Active Sites in Core-Shell Nanowire Array as Mott-Schottky Electrocatalysts for Efficient and Stable Overall Water Splitting
  • 2018
  • Ingår i: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028. ; 28:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Developing earth-abundant, active, and robust electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remains a vital challenge for efficient conversion of sustainable energy sources. Herein, metal-semiconductor hybrids are reported with metallic nanoalloys on various defective oxide nanowire arrays (Cu/CuOx, Co/CoOx, and CuCo/CuCoOx) as typical Mott-Schottky electrocatalysts. To build the highway of continuous electron transport between metals and semiconductors, nitrogen-doped carbon (NC) has been implanted on metal-semiconductor nanowire array as core-shell conductive architecture. As expected, NC/CuCo/CuCoOx nanowires arrays, as integrated Mott-Schottky electrocatalysts, present an overpotential of 112 mV at 10 mA cm(-2) and a low Tafel slope of 55 mV dec(-1) for HER, simultaneously delivering an overpotential of 190 mV at 10 mA cm(-2) for OER. Most importantly, NC/CuCo/CuCoOx architectures, as both the anode and the cathode for overall water splitting, exhibit a current density of 10 mA cm(-2) at a cell voltage of 1.53 V with excellent stability due to high conductivity, large active surface area, abundant active sites, and the continuous electron transport from prominent synergetic effect among metal, semiconductor, and nitrogen-doped carbon. This work represents an avenue to design and develop efficient and stable Mott-Schottky bifunctional electrocatalysts for promising energy conversion.
  •  
8.
  • Hou, Jungang, et al. (författare)
  • Vertically Aligned Oxygenated-CoS2-MoS2 Heteronanosheet Architecture from Polyoxometalate for Efficient and Stable Overall Water Splitting
  • 2018
  • Ingår i: ACS Catalysis. - : AMER CHEMICAL SOC. - 2155-5435. ; 8:5, s. 4612-4621
  • Tidskriftsartikel (refereegranskat)abstract
    • To achieve efficient conversion of renewable energy sources through water splitting, low-cost, earth-abundant, and robust electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are required. Herein, vertically aligned oxygenated-CoS2-MoS2 (O-CoMoS) heteronanosheets grown on flexible carbon fiber cloth as bifunctional electrocatalysts have been produced by use of the Anderson-type (NH4)(4)[CoIIMo(6)O(2)4H(6)]center dot 6H(2)O polyoxometalate as bimetal precursor. In comparison to different O-FeMoS, O-NiMoS, and MoS2 nanosheet arrays, the O-CoMoS heteronanosheet array exhibited low overpotentials of 97 and 272 mV to reach a current density of 10 mA cm(-2) in alkaline solution for the HER and OER, respectively. Assembled as an electrolyzer for overall water splitting, O-CoMoS heteronanosheets as both the anode and cathode deliver a current density of 10 mA cm(-2) at a quite low cell voltage of 1.6 V. This O-CoMoS architecture is highly advantageous for a disordered structure, exposure of active heterointerfaces, a "highway" of charge transport on two-dimensional conductive channels, and abundant active catalytic sites from the synergistic effect of the heterostructures, accomplishing a dramatically enhanced performance for the OER, HER, and overall water splitting. This work represents a feasible strategy to explore efficient and stable bifunctional bimetal sulfide electrocatalysts for renewable energy applications.
  •  
9.
  • Ahmad, Shargeel, et al. (författare)
  • Metal-Organic Framework Thin Film-Based Dye Sensitized Solar Cells with Enhanced Photocurrent
  • 2018
  • Ingår i: Materials. - : MDPI. - 1996-1944. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal-organic framework thin film-based dye sensitized solar cell is fabricated with highly oriented, crystalline, and porous Zn-perylene metal-organic framework (MOF) thin film (SURMOF) which is integrated with Bodipy embedded in poly(methyl methacrylate). It has been demonstrated that the photocurrent can be enhanced by a factor of 5 relative to Zn-perylene MOF thin film due to triplet-triplet annihilation up-conversion between the Bodipy/PMMA sensitizer and the Zn-perylene MOF thin film acceptor using Co(bpy)(3)(2+/3+) as redox mediator.
  •  
10.
  • Ahmad, Shargeel, et al. (författare)
  • Photon Up-Conversion via Epitaxial Surface-Supported Metal-Organic Framework Thin Films with Enhanced Photocurrent
  • 2018
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 1:2, s. 249-253
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a new triplet-triplet annihilation photon up-conversion (TTA-UC) system using an epitaxial Zn-perylene surface-supported metal-organic framework (SURMOF) grown on metal oxide surface as "emitter", and a platinum octaethylporphyrin (PtOEP) as "sensitizer" in [Co(bpy)(3)](2+/3+) acetonitrile solution. It has been demonstrated that the photocurrent can be significantly enhanced relative to epitaxial Zn-perylene SURMOF due to the TTA-UC mechanism. This initial result holds promising applications toward SURMOF-based solar energy conversion devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 261

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy