SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sun Xiaole 1983 ) "

Sökning: WFRF:(Sun Xiaole 1983 )

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Roth, Florian, et al. (författare)
  • Methane emissions offset atmospheric carbon dioxide uptake in coastal macroalgae, mixed vegetation and sediment ecosystems
  • 2023
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal ecosystems can efficiently remove carbon dioxide (CO2) from the atmosphere and are thus promoted for nature-based climate change mitigation. Natural methane (CH4) emissions from these ecosystems may counterbalance atmospheric CO2 uptake. Still, knowledge of mechanisms sustaining suchCH4 emissions and their contribution to net radiative forcing remains scarce for globally prevalent macroalgae, mixed vegetation, and surrounding depositional sediment habitats. Here we show that these habitats emit CH4 in the range of 0.1 – 2.9 mg CH4 m−2 d−1 to the atmosphere, revealing in situ CH4 emissions from macroalgae that weresustained by divergent methanogenic archaea in anoxic microsites. Over an annual cycle, CO2-equivalent CH4 emissions offset 28 and 35% of the carbon sink capacity attributed to atmospheric CO2 uptake in the macroalgae and mixed vegetation habitats, respectively, and augment net CO2 release of unvegetated sediments by 57%. Accounting for CH4 alongside CO2 sea-air fluxes and identifying the mechanisms controlling these emissions is crucial to constrain the potential of coastal ecosystems as net atmospheric carbon sinks and develop informed climate mitigation strategies.
  •  
2.
  • Huang, Tzu-Hao, et al. (författare)
  • Separating Si phases from diagenetically-modified sediments through sequential leaching.
  • 2023
  • Ingår i: Chemical Geology. - 0009-2541 .- 1872-6836.
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon (Si) phases such as biogenic silica, lithogenic silicate and authigenic silica/silicate in marine sediments provide valuable information about past Si cycling. Wet-chemical sequential leaching methods are often applied to extract different Si phases from marine sediments to study Si diagenetic processes in shallow subsurface. The potential of this method to separate Si phases from deeply-buried and diagenetically-modified sediments has not been systematically examined. We applied a sequential leaching protocol to drill core sediments retrieved from the Ulleung Basin, East/Japan Sea. We performed geochemical (elemental abundance and stable Si isotopes, δ30Si) and microscopic (X-ray diffraction and scanning electron microscope) analyses to monitor leaching efficiency in separating different Si phases. We show that, prior to alkaline leaching, applying weak acid is able to remove metal oxide and/or clay-like phases. The following Na2CO3 leaching, based on a commonly-adopted protocol, is able to dissolve some but not all diatoms. The results of elemental contents and δ30Si values of leachates suggest that, in diagenetically-modified sediments, either a longer digesting time or a harsher alkaline leaching is needed to dissolve all diatoms. This is attributed to increased resistance of diatoms to Na2CO3 leaching as a result of reduced surface area and/or improved SiO2 tetrahedron ordering during diagenetic processes over time and burial depths. Lithogenic silicate minerals can be dissolved by NaOH and potentially separated from diatoms if the latter is completely removed in the preceding leaching steps. Even if a trace amount of diatom is left undissolved in the NaOH leaching, it is still possible to separate the two through a mass balance calculation given the knowledge of composition for the two end-members. We conclude that a successful separation of Si phases in diagenetically modified sediments relies on the knowledge of elemental abundance and even δ30Si values of the leachates, as well as information such as species of Si-skeleton organisms, contents and maturation degree of biogenic silica.
  •  
3.
  • Roth, Florian, et al. (författare)
  • High spatiotemporal variability of methane concentrations challenges estimates of emissions across vegetated coastal ecosystems.
  • 2022
  • Ingår i: Global change biology. - : Wiley. - 1365-2486 .- 1354-1013. ; 28:14, s. 4308-4322
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal methane (CH4 ) emissions dominate the global ocean CH4 budget and can offset the "blue carbon" storage capacity of vegetated coastal ecosystems. However, current estimates lack systematic, high-resolution, and long-term data from these intrinsically heterogeneous environments, making coastal budgets sensitive to statistical assumptions and uncertainties. Using continuous CH4 concentrations, δ13 C-CH4 values, and CH4 sea-air fluxes across four seasons in three globally pervasive coastal habitats, we show that the CH4 distribution is spatially patchy over meter-scales and highly variable in time. Areas with mixed vegetation, macroalgae, and their surrounding sediments exhibited a spatiotemporal variability of surface water CH4 concentrations ranging two orders of magnitude (i.e., 6-460nM CH4 ) with habitat-specific seasonal and diurnal patterns. We observed (1) δ13 C-CH4 signatures that revealed habitat-specific CH4 production and consumption pathways, (2) daily peak concentration events that could change >100% within hours across all habitats, and (3) a high thermal sensitivity of the CH4 distribution signified by apparent activation energies of ~1eV that drove seasonal changes. Bootstrapping simulations show that scaling the CH4 distribution from few samples involves large errors, and that ~50 concentration samples per day are needed to resolve the scale and drivers of the natural variability and improve the certainty of flux calculations by up to 70%. Finally, we identify northern temperate coastal habitats with mixed vegetation and macroalgae as understudied but seasonally relevant atmospheric CH4 sources (i.e., releasing≥100μmol CH4 m-2 day-1 in summer). Due to the large spatial and temporal heterogeneity of coastal environments, high-resolution measurements will improve the reliability of CH4 estimates and confine the habitat-specific contribution to regional and global CH4 budgets.
  •  
4.
  • Song, Zhaoliang, et al. (författare)
  • High potential of stable carbon sequestration in phytoliths of China's grasslands
  • 2022
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 28:8, s. 2736-2750
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytolith carbon (C) sequestration plays a key role in mitigating global climate change at a centennial to millennial time scale. However, previous estimates of phytolith-occluded carbon (PhytOC) storage and potential in China's grasslands have large uncertainties mainly due to multiple data sources. This contributes to the uncertainty in predicting long-term C sequestration in terrestrial ecosystems using Earth System Models. In this study, we carried out an intensive field investigation (79 sites, 237 soil profiles [0-100 cm], and 61 vegetation assessments) to quantify PhytOC storage in China's grasslands and to better explore the biogeographical patterns and influencing factors. Generally, PhytOC production flux and soil PhytOC density in both the Tibetan Plateau and the Inner Mongolian Plateau had a decreasing trend from the Northeast to the Southwest. The aboveground PhytOC production rate in China's grassland was 0.48 x 10(6) t CO2 a(-1), and the soil PhytOC storage was 383 x 10(6) t CO2. About 45% of soil PhytOC was stored in the deep soil layers (50-100 cm), highlighting the importance of deep soil layers for C stock assessments. Importantly, the Tibetan Plateau had the greatest contribution (more than 70%) to the PhytOC storage in China's grasslands. The results of multiple regression analysis indicated that altitude and soil texture significantly influenced the spatial distribution of soil PhytOC, explaining 78.1% of the total variation. Soil phytolith turnover time in China's grasslands was mainly controlled by climatic conditions, with the turnover time on the Tibetan Plateau being significantly longer than that on the Inner Mongolian Plateau. Our results offer more accurate estimates of the potential for phytolith C sequestration from ecological restoration projects in degraded grassland ecosystems. These estimates are essential to parameterizing and validating global C models.
  •  
5.
  • Sun, Xiaole, 1983-, et al. (författare)
  • Climate Dependent Diatom Production is Preserved in Biogenic Si Isotope Signatures
  • 2011
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 8:11, s. 3491-3499
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to reconstruct diatom production in the subarctic northern tip of the Baltic Sea, Bothnian Bay, based on down-core analysis of Si isotopes in biogenic silica (BSi). Dating of the sediment showed that the samples covered the period 1820 to 2000. The sediment core record can be divided into two periods, an unperturbed period from 1820 to 1950 and a second period affected by human activities (from 1950 to 2000). This has been observed elsewhere in the Baltic Sea. The shift in the sediment core record after 1950 is likely caused by large scale damming of rivers. Diatom production was inferred from the Si isotope composition which ranged between δ30Si −0.18‰ and +0.58‰ in BSi, and assuming fractionation patterns due to the Raleigh distillation, the production was shown to be correlated with air and water temperature, which in turn were correlated with the mixed layer (ML) depth. The sedimentary record showed that the deeper ML depth observed in colder years resulted in less production of diatoms. Pelagic investigations in the 1990's have clearly shown that diatom production in the Baltic Sea is controlled by the ML depth. Especially after cold winters and deep water mixing, diatom production was limited and dissolved silicate (DSi) concentrations were not depleted in the water column after the spring bloom. Our method corroborates these findings and offers a new method to estimate diatom production over much longer periods of time in diatom dominated aquatic systems, i.e. a large part of the world's ocean and coastal seas.
  •  
6.
  • Sun, Xiaole, 1983-, et al. (författare)
  • Effect of diatom growth and dissolution on silicon isotope fractionationin an estuarine system
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Si isotopes provide a powerful tool to reveal past and present patterns in diatom production. Most studies have focused on Si fractionation factors during diatom growth in open ocean systems and have found lower Si isotope values in diatom shells (biogenic silica). Recent findings indicate that even the fractionation of Si isotopes during the physicochemical dissolution of diatom shells in the opposite direction produces higher δ30Si values in the remaining biogenic silica (BSi), allowing for the interpretation of diatom production patterns over geological time scales. However, estuarine and coastal primary production represents approximately 30-50% of global marine production, and there are hardly any studies on Si isotope fractionation during either diatom growth or dissolution. In this study, Si isotope fractionation during diatom growth and the dissolution of the frustule were measured. Two species of diatoms from the Baltic Sea, one of the largest estuarine systems in the world, were selected for this study. The results show that both species of diatoms during growth yields an identical Si isotope fractionation factor of 0.99925 for 29Si and 0.9984 for 30Si. In contrast to findings from open ocean species, no Si isotope fractionation during dissolution was observed even after 90% of the diatoms dissolved. Whether there is isotope fractionation during dissolution or not will have profound implications for studies using Si isotopes to interpret the Si cycle in marine and estuarine systems. We propose that the small size of the diatoms living in estuarine systems with low salinity may explain the non-existence of Si isotope fractionation during dissolution. Therefore, we suggest that Si isotopes are an instrumental variable holding information about original environmental conditions of estuarine and even coastal systems. Finally, we tested the Si isotope fractionation patterns gained from the lab experiments on a sediment core, corroborating the observed dissolved silicates (DSi) uptake rates in the above water column during diatom growth.
  •  
7.
  • Sun, Xiaole, 1983- (författare)
  • Isotope-based reconstruction of the biogeochemical Si cycle : Implications for climate change and human perturbation
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The global silicon (Si) cycle is of fundamental importance for the global carbon cycle. Diatom growth in the oceans is a major sequestration pathway for carbon on a global scale (often referred to as the biological pump). Patterns of diatoms preserved in marine sediment records can reveal both natural and anthropogenic driven environmental change, which can be used to understand silicon dynamics and climate change. Si isotopes have been shown to have great potential in order to understand the Si cycle by revealing both past and present patterns of dissolved Si (DSi) utilization, primarily when diatoms form their siliceous frustules (noted as biogenic silica, BSi). However, studies using Si isotopes are still scarce and only a few studies exist where stable Si isotopes are used to investigate the biogeochemical Si cycle in aquatic systems. Therefore, this thesis focuses on developing analytical methods for studying BSi and DSi and also provides tools to understand the observed Si isotope distribution, which may help to understand impacts of climate change and human perturbations on marine ecosystems. The Baltic Sea, one of the biggest estuarine systems in the world, was chosen as the study site. BSi samples from a sediment core in Bothnian Bay, the most northern tip of the Baltic Sea, and diatom samples from the Oder River, draining into the southern Baltic Sea were measured and reported in Paper II and III, after establishing a method for Si isotope measurements (Paper I). Si isotope fractionation during diatom production and dissolution was also investigated in a laboratory-controlled experiment (Paper IV) to validate the observations from the field. The major result is that Si isotope signatures in BSi can be used as an historical archive for diatom growth and also related to changes in climate variables. There is isotopic evidence that the Si cycle has been significantly altered in the Baltic Sea catchment by human activities. 
  •  
8.
  • Sun, Xiaole, 1983-, et al. (författare)
  • Large-Scale Summertime Variability of Carbonate Chemistry Across the East Siberian Sea: Primary Production Versus Ikaite Dissolution
  • 2024
  • Ingår i: Journal of Geophysical Research: Oceans. - 2169-9275 .- 2169-9291. ; 129:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Sea-ice dynamics can affect carbon cycling in polar oceans, with sea-ice ikaite acting as a potentially important carbon pump. However, there is no large-scale direct field evidence to support this. Here we used a unique data set that combined continuous measurements of atmospheric and water CO2 concentrations with water chemistry data collected over 1,200km along the East Siberian Sea, the widest Arctic shelf sea. Our results reveal large spatial heterogeneity of sea-ice ikaite contents, which directly interact with carbonate chemistry in the water column. Our findings demonstrate that the CO2 drawdown by sea-ice ikaite dissolution could be as important as that by primary production. We suggest that the role of ikaite in regulating the seasonal carbon cycle on a regional scale could be more important than we previously thought. Effects of the warmer climate on sea ice loss might also play a role in the ikaite inventory.
  •  
9.
  • Sun, Xiaole, 1983-, et al. (författare)
  • Silicon isotope enrichment in diatoms during nutrient-limited bloomsin a eutrophied river system
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • We examined the Si isotope fractionation in diatoms by following a massive nutrient limited diatom bloom from a eutrophied natural system. We hypothesized that the Si isotope fractionation should be larger in comparison to observations in less nutrient rich environments. The Oder River, which is a eutrophied river draining the western half of Poland and entering the southern Baltic Sea, shows that a diatom bloom may cause extreme Si isotope fractionation. The rapid nutrient depletion and fast biogenic silica (BSi) increase observed during the spring bloom suggests a Rayleigh behavior for a closed system for dissolved Si (DSi) and BSi in the river at certain time scales. An enrichment factor (ε) of up to -1.6‰ is found based on observations between April and June, 2004. A very high δ30Si value of up to +3.05‰ is measured in diatoms. This is about 2 times higher than previously recorded δ30Si in freshwater diatoms. The Rayleigh model used to predict the δ30Si values of DSi suggests that the initial value before the start of the diatom bloom is close to +2‰. This indicates that there is a biological control of the Si isotope compositions entering the river, probably caused by Si isotope fractionation during uptake of Si in phytoliths. Clearly, eutrophied rivers with enhanced diatom blooms deliver 30Si-enriched DSi and BSi to the coastal ocean, which can be used to trace the biogeochemistry of DSi/BSi in estuaries.
  •  
10.
  • Sun, Xiaole, 1983-, et al. (författare)
  • Stable silicon isotope analysis on nanomole quantities using MC-ICP-MS with a hexapole gas-collision cell
  • 2010
  • Ingår i: Journal of Analytical Atomic Spectrometry. - : Royal Society of Chemistry (RSC). - 0267-9477 .- 1364-5544. ; 25:2, s. 156-162
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate in this study that a single focusing multiple collector inductively coupled plasma massspectrometer (MC-ICP-MS) equipped with a hexapole gas-collision cell (GV-instrument Isoprobe) canprecisely determine the d29Si (2S.D., 0.2&) using a total Si consumption of less than 14 nmole (390 ngSi). Testing and evaluation of background, rinse time, and major matrix effects have been performed ina systematic way to establish a procedure to measure d29Si in small quantities. Chemical purificationprior to analysis is required to remove potential interferences. For data collected during a four-yearperiod, the average d29Si value of IRMM-018 relative to NBS-28 was found to be 0.95& (n ¼ 23,2S.D. 0.16&) with a 95% confidence interval (0.95 0.028&). The mean d29Si value of the Big-Batchstandard was found to be 5.50& (n ¼ 6, 2S.D. 0.26&). Although determination of the d30Simeasurements is not possible, with our current instrument we demonstrate that this system providesa fast and long-term reliable method for the analysis of d29Si in purified samples with low Siconcentration (18 mM Si).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
Typ av publikation
tidskriftsartikel (8)
annan publikation (2)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (8)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Sun, Xiaole, 1983- (8)
Humborg, Christoph (6)
Mörth, Carl-Magnus (4)
Sun, Xiaole (3)
Geibel, Marc C. (3)
Andersson, Per (2)
visa fler...
Bonaglia, Stefano, 1 ... (2)
Roth, Florian (2)
Norkko, Alf (2)
Prytherch, John (2)
Wang, Hailong (2)
Yu, Changxun, 1983- (2)
Song, Zhaoliang (2)
Van Zwieten, Lukas (2)
Yang, Yuanhe (1)
Broman, Elias (1)
Brüchert, Volker (1)
Hong, Wei-Li, 1982- (1)
Nascimento, Francisc ... (1)
Conley, Daniel (1)
Anderson, Leif G, 19 ... (1)
Humborg, Christoph, ... (1)
Legrand, Catherine (1)
Land, Magnus (1)
Crill, Patrick (1)
Dessirier, Benoit (1)
Mörth, Carl-Magnus, ... (1)
Olofsson, Martin (1)
Broman, Elias, 1985- (1)
Kielman-Schmitt, Mel ... (1)
Bolan, Nanthi (1)
Humborg, Christoph, ... (1)
Brüchert, Volker, 19 ... (1)
Pickering, Rebecca (1)
Gustafsson, Bo (1)
Pastuszak, Marianna (1)
Mörth, Carl-Magnus, ... (1)
Andersson, Per, Doce ... (1)
Liu, Hongyan (1)
Yang, Xiaoming (1)
Hao, Qian (1)
Zhang, Xiaodong (1)
Wang, Weiqi (1)
Nascimento, Francisc ... (1)
Huang, Tzu-Hao (1)
Somelar, Peeter (1)
Kirsimae, Kalle (1)
Kim, Ji-Hoon (1)
Song, Alin (1)
Lundevall-Zara, Mays ... (1)
visa färre...
Lärosäte
Stockholms universitet (11)
Göteborgs universitet (3)
Lunds universitet (2)
Linnéuniversitetet (2)
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy