SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sun Yanming) "

Sökning: WFRF:(Sun Yanming)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Cai, Yunhao, et al. (författare)
  • Effect of the Energy Offset on the Charge Dynamics in Nonfullerene Organic Solar Cells
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 12:39, s. 43984-43991
  • Tidskriftsartikel (refereegranskat)abstract
    • The energy offset, considered as the driving force for charge transfer between organic molecules, has significant effects on both charge separation and charge recombination in organic solar cells. Herein, we designed material systems with gradually shifting energy offsets, including both positive and negative values. Time-resolved spectroscopy was used to monitor the charge dynamics within the bulk heterojunction. It is striking to find that there is still charge transfer and charge generation when the energy offset reached -0.10 eV (ultraviolet photoelectron spectroscopy data). This work not only indicates the feasibility of the free carrier generation and the following charge separation under the condition of a negative offset but also elucidates the relationship between the charge transfer and the energy offset in the case of polymer chlorination.
  •  
3.
  • Chen, Xian-Kai, et al. (författare)
  • A unified description of non-radiative voltage losses in organic solar cells
  • 2021
  • Ingår i: Nature Energy. - : Springer Nature. - 2058-7546. ; 6:8, s. 799-806
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic solar cells based on non-fullerene acceptors have enabled high efficiencies yet their charge dynamics and its impact on the photovoltaic parameters are not fully understood. Now, Chen et al. provide a general description of non-radiative voltage losses in both fullerene and non-fullerene solar cells. Recent advances in organic solar cells based on non-fullerene acceptors (NFAs) come with reduced non-radiative voltage losses (Delta V-nr). Here we show that, in contrast to the energy-gap-law dependence observed in conventional donor:fullerene blends, the Delta V-nr values in state-of-the-art donor:NFA organic solar cells show no correlation with the energies of charge-transfer electronic states at donor:acceptor interfaces. By combining temperature-dependent electroluminescence experiments and dynamic vibronic simulations, we provide a unified description of Delta V-nr for both fullerene- and NFA-based devices. We highlight the critical role that the thermal population of local exciton states plays in low-Delta V-nr systems. An important finding is that the photoluminescence yield of the pristine materials defines the lower limit of Delta V-nr. We also demonstrate that the reduction in Delta V-nr (for example, <0.2 V) can be obtained without sacrificing charge generation efficiency. Our work suggests designing donor and acceptor materials with high luminescence efficiency and complementary optical absorption bands extending into the near-infrared region.
  •  
4.
  • Fu, Huiting, et al. (författare)
  • Suppression of Recombination Energy Losses by Decreasing the Energetic Offsets in Perylene Diimide-Based Nonfullerene Organic Solar Cells
  • 2018
  • Ingår i: ACS Energy Letters. - : AMER CHEMICAL SOC. - 2380-8195. ; 3:11, s. 2729-2735
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, a range of nonfullerene organic solar cells comprising two perylene diimide (PDI)-based small molecule acceptors in combination with four representative polymer donors have been investigated and compared. In addition to significant differences in the power conversion efficiency, the energy losses of photovoltaic devices vary widely for these two PDI-based acceptors when paired with different donors. The sensitive Fourier-transform photocurrent spectroscopy (FTPS) and electroluminescence (EL) measurements have been performed to quantify their respective energetic offsets (Delta(Eoffiet)) and energy losses, with the aim of understanding the distinct energy losses in the studied organic blends. By comparing these results, we find that with decreasing Delta(Eoffset), recombination loss due to the charge-transfer state absorption A both nonradiative recombination loss and radiative are suppressed; as a result, the total energy loss is decreased. These observations offer a deep understanding of how the energetic offset affects the energy losses from the viewpoint of the Shockey-Queisser limit.
  •  
5.
  • Li, Chao, et al. (författare)
  • Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells
  • 2021
  • Ingår i: Nature Energy. - : NATURE RESEARCH. - 2058-7546.
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular design of acceptor and donor molecules has enabled major progress in organic photovoltaics. Li et al. show that branched alkyl chains in non-fullerene acceptors allow favourable morphology in the active layer, enabling a certified device efficiency of 17.9%. Molecular design of non-fullerene acceptors is of vital importance for high-efficiency organic solar cells. The branched alkyl chain modification is often regarded as a counter-intuitive approach, as it may introduce an undesirable steric hindrance that reduces charge transport in non-fullerene acceptors. Here we show the design and synthesis of a highly efficient non-fullerene acceptor family by substituting the beta position of the thiophene unit on a Y6-based dithienothiophen[3,2-b]-pyrrolobenzothiadiazole core with branched alkyl chains. It was found that such a modification to a different alkyl chain length could completely change the molecular packing behaviour of non-fullerene acceptors, leading to improved structural order and charge transport in thin films. An unprecedented efficiency of 18.32% (certified value of 17.9%) with a fill factor of 81.5% is achieved for single-junction organic solar cells. This work reveals the importance of the branched alkyl chain topology in tuning the molecular packing and blend morphology, which leads to improved organic photovoltaic performance.
  •  
6.
  • Lin, Yuze, et al. (författare)
  • Mapping Polymer Donors toward High-Efficiency Fullerene Free Organic Solar Cells
  • 2017
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 29:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Five polymer donors with distinct chemical structures and different electronic properties are surveyed in a planar and narrow-bandgap fused-ring electron acceptor (IDIC)-based organic solar cells, which exhibit power conversion efficiencies of up to 11%.
  •  
7.
  • Song, Jiali, et al. (författare)
  • Solid additive engineering enables high-efficiency and eco-friendly all-polymer solar cells
  • 2022
  • Ingår i: Matter. - : ELSEVIER. - 2590-2393 .- 2590-2385. ; 5:11, s. 4047-4059
  • Tidskriftsartikel (refereegranskat)abstract
    • Currently, morphology optimization of all-polymer solar cells (all-PSCs) strongly depends on the use of solvent additives, which are usually highly toxic and harmful to the environment and human health. Here, we report a green and volatile solid additive, 2-methoxynaphthalene (2-MN). It was found that the incorporation of 2-MN into a PM6:PY-DT blend can effectively manipulate the aggregations of PM6 and PY-DT during film depositing and thermal annealing processes and results in highly ordered molecular packing and favorable phase-separated morphology. Consequently, a re-cord-high efficiency of 17.32% is achieved for the PM6:PY-DT de-vice. Moreover, 2-MN-processed all-PSCs were fabricated by using non-halogenated solvent. High efficiencies of 17.03% and 16.67% are obtained for all-PSCs fabricated under nitrogen atmosphere and ambient conditions, respectively. Our work shows that the utili-zation of 2-MN as a green and solid additive is a simple and feasible strategy to optimize the morphology and sheds new light on eco-friendly fabrication and application of all-PSCs.
  •  
8.
  •  
9.
  • Sun, Weiwei, et al. (författare)
  • Gluing together metallic and covalent layers to form Ru2C under ambient conditions
  • 2015
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 17:15, s. 9730-9736
  • Tidskriftsartikel (refereegranskat)abstract
    • Ru2C has recently been synthesised at high pressure and high temperature, and was assumed to have a structure with space group P (3) over bar m1. However, subsequent theoretical work has revealed that this structure is unstable under ambient conditions, which motivated us to look for the stable structure. In this work, we explore the structures of Ru2C by using an unbiased swarm structure searching algorithm. The structures with R3m and R (3) over barm symmetries have been found to be lower in energy than the P (3) over bar m1 structure, at the same time being dynamically stable under ambient conditions. These layered structures consist of alternating Ru bilayers and C monolayers in the R3m structure, and alternating Ru tetra-layers and C bilayers in the R (3) over barm structure. The C layers are more evenly distributed and more covalently bound to the Ru layers in the R3m structure than in the R (3) over barm structure. Instead, in the R (3) over barm structure there exists more Ru-Ru metallic bonding, which has a crucial role in diminishing the hardness of this material. Our findings should stimulate further explorations of the structures and properties of the heavy transition metal carbides and nitrides, potentially leading to industrial applications.
  •  
10.
  • Sun, Xiaoyu, et al. (författare)
  • Tuning Mo/W ratio to improve high temperature oxidation resistance of single crystal nickel base superalloys
  • 2024
  • Ingår i: Materials Today Communications. - : ELSEVIER. - 2352-4928. ; 38
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of different Mo/W ratios of three single crystal nickel base superalloys on the oxidation behavior was investigated at 1100 degrees C. Both isothermal and cyclic oxidation tests showed that increasing Mo/W ratio corresponds to lower weight change and improved resistance. The microscopic observation uncovers that the harmful effect of Mo is limited by the dense Al2O3 scale. In contrast, excessive W leads to fast growth of interlayer and its premature spallation. This research proposes and verifies a new way to improve oxidation resistance of alloy, namely, balancing the harmful effect of refractory elements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
Typ av publikation
tidskriftsartikel (10)
annan publikation (1)
Typ av innehåll
refereegranskat (10)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Inganäs, Olle (2)
Liu, Feng (2)
Johansson, Börje (2)
Zhang, Yan (1)
Korhonen, Laura (1)
Lindholm, Dan (1)
visa fler...
Vertessy, Beata G. (1)
Wang, Mei (1)
Wang, Xin (1)
Liu, Yang (1)
Kumar, Rakesh (1)
Wang, Dong (1)
Li, Ke (1)
Liu, Ke (1)
Zhang, Yang (1)
Nàgy, Péter (1)
Kominami, Eiki (1)
van der Goot, F. Gis ... (1)
Bonaldo, Paolo (1)
Thum, Thomas (1)
Adams, Christopher M (1)
Minucci, Saverio (1)
Vellenga, Edo (1)
Wang, Lihui (1)
Li, Yan (1)
Bao, Qinye (1)
Swärd, Karl (1)
Nilsson, Per (1)
De Milito, Angelo (1)
Zhang, Jian (1)
Shukla, Deepak (1)
Kågedal, Katarina (1)
Chen, Guoqiang (1)
Liu, Wei (1)
Cheetham, Michael E. (1)
Sigurdson, Christina ... (1)
Clarke, Robert (1)
Zhang, Fan (1)
Gonzalez-Alegre, Ped ... (1)
Jin, Lei (1)
Chen, Qi (1)
Taylor, Mark J. (1)
Romani, Luigina (1)
Wang, Ying (1)
Kumar, Ashok (1)
Simons, Matias (1)
Ishaq, Mohammad (1)
Yang, Qian (1)
Algül, Hana (1)
Tress, Wolfgang (1)
visa färre...
Lärosäte
Linköpings universitet (8)
Kungliga Tekniska Högskolan (3)
Umeå universitet (1)
Uppsala universitet (1)
Stockholms universitet (1)
Lunds universitet (1)
visa fler...
Karolinska Institutet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (9)
Teknik (2)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy