SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sun Yanyan) "

Search: WFRF:(Sun Yanyan)

  • Result 1-10 of 25
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Beal, Jacob, et al. (author)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • D'angelo, Barbara, et al. (author)
  • GSK3β inhibition protects the immature brain from hypoxic-ischaemic insult via reduced STAT3 signalling
  • 2016
  • In: Neuropharmacology. - : Elsevier BV. - 0028-3908. ; 101, s. 13-23
  • Journal article (peer-reviewed)abstract
    • Hypoxic-ischaemic (HI) injury is an important cause of neurological morbidity in neonates. HI leads to pathophysiological responses, including inflammation and oxidative stress that culminate in cell death. Activation of glycogen synthase kinase 3β (GSK3β) and the signal transducer and activator of transcription (STAT3) promotes brain inflammation. The purpose of this study was to test whether inhibition of GSK3β signalling protects against neonatal HI brain injury. Mice were subjected to HI at postnatal day (PND) 9 and treated with a selective GSK3β inhibitor, SB216763. Brain injury and caspase-3 activation, anti-oxidant and inflammatory mRNA responses and activation of STAT3 were analysed. Our results show that HI reduced phosphorylation of GSK3β, thus promoting its kinase activity. The GSK3β inhibitor reduced caspase-3 activation and neuronal cell death elicited by HI and reverted the effects of HI on gene expression of the anti-oxidant enzyme sod2 and mitochondrial factor pgc1α. The HI insult activated STAT3 in glial cells and GSK3β inhibition attenuated STAT3 phosphorylation and its nuclear translocation following HI. Further, GSK3β inhibition reduced HI-induced gene expression of pro-inflammatory cytokines tnfα and Il-6, while promoted the anti-inflammatory factor Il-10. In summary, data show that GSK3β inhibition is neuroprotective in neonatal HI brain injury likely via reduced pro-inflammatory responses by blocking STAT3 signalling. Our study suggests that pharmacological interventions built upon GSK3β silencing strategies could represent a novel therapy in neonatal brain injury. © 2015 Elsevier Ltd. All rights reserved.
  •  
3.
  • Du, Xiaonan, et al. (author)
  • Systemic stimulation of TLR2 impairs neonatal mouse brain development.
  • 2011
  • In: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 6:5
  • Journal article (peer-reviewed)abstract
    • Inflammation is associated with perinatal brain injury but the underlying mechanisms are not completely characterized. Stimulation of Toll-like receptors (TLRs) through specific agonists induces inflammatory responses that trigger both innate and adaptive immune responses. The impact of engagement of TLR2 signaling pathways on the neonatal brain is still unclear. The aim of this study was to investigate the potential effect of a TLR2 agonist on neonatal brain development.
  •  
4.
  • Han, Wei, et al. (author)
  • Delayed, Long-Term Administration of the Caspase Inhibitor Q-VD-OPh Reduced Brain Injury Induced by Neonatal Hypoxia-Ischemia.
  • 2014
  • In: Developmental neuroscience. - : S. Karger AG. - 1421-9859 .- 0378-5866. ; 36:1, s. 64-72
  • Journal article (peer-reviewed)abstract
    • Apoptosis contributes greatly to the morphological and biochemical features of cell death after neonatal cerebral hypoxia-ischemia (HI), making this mode of cell death a promising therapeutic target. We previously showed that 10 mg/kg of the caspase inhibitor Q-VD-OPh at the onset of and immediately after HI on postnatal day 9 reduced brain infarct volume. In this study, delayed administration of Q-VD-OPh, 12 and 36 h after HI, decreased HI-induced caspase-3 activity (DEVD cleavage) by 23% and diminished the levels of the proinflammatory chemokines CCL2 (MCP-1) and CCL3 (MIP-1α) by 29.3 and 29.1%, respectively, but not the levels of the anti-inflammatory cytokines IL-4 and IL-10. Long-term administration of Q-VD-OPh initiated at 12 h after HI, and continued at 24-hour intervals for 2 weeks, reduced total brain tissue loss by 31.3% from 41.5 ± 3.1 mm(3) in the vehicle group to 28.5 ± 3.0 mm(3) in the Q-VD-OPh group when evaluated 16 weeks after HI (p = 0.004). Q-VD-OPh treatment also ameliorated the loss of sensorimotor function, as evaluated by a cylinder rearing test (Q-VD-OPh: 30.8 ± 4.3% vs. vehicle: 59.7 ± 6.3% in nonimpaired forepaw preference) 3 weeks after HI, and reduced HI-induced hyperactivity, as measured in an open field test (Q-VD-OPh: 4,062 ± 198 cm vs. vehicle: 4,792 ± 205 cm in distance moved) 7 weeks after the insult. However, the functional protection was no longer observed when analyzed again at later time points. The mechanisms underlying the discrepancy between sustained morphological protection and transient functional protection remain to be elucidated. © 2014 S. Karger AG, Basel.
  •  
5.
  • Huo, Kaiming, et al. (author)
  • Lithium reduced neural progenitor apoptosis in the hippocampus and ameliorated functional deficits after irradiation to the immature mouse brain.
  • 2012
  • In: Molecular and cellular neurosciences. - : Elsevier BV. - 1095-9327 .- 1044-7431. ; 51:1-2, s. 32-42
  • Journal article (peer-reviewed)abstract
    • Lithium was recently shown to inhibit apoptosis and promote survival of neural progenitor cells after hypoxia-ischemia in the immature rat brain. Our aim was to evaluate the effects of lithium on cell death and proliferation in the hippocampus after irradiation (IR) to the immature brain. Male mice were injected with 2 mmol/kg lithium chloride i.p. on postnatal day 9 (P9) and additional lithium injections, 1 mmol/kg, were administered at 24 h intervals for up to 7 days. BrdU was injected 4 h after lithium injections on P9 and P10. The left hemisphere received a single dose of 8 Gy (MV photons) on P11. The animals were euthanized 6 h or 7 weeks after IR. The number of BrdU-labeled cells in the subgranular zone (SGZ) of the granule cell layer (GCL) 6h after IR was 24% higher in the lithium-treated mice. The number of proliferating, phospho-histone H3-positive cells in the SGZ 7 weeks after IR was 59% higher in the lithium group, so the effect was long-lasting. The number of apoptotic cells in the SGZ 6 h after IR was lower in the lithium group, as judged by 3 different parameters, pyknosis, staining for active caspase-3 and TUNEL. Newly formed cells (BrdU-labeled 1 or 2 days before IR) showed the greatest degree of protection, as judged by 50% fewer TUNEL-positive cells, whereas non-BrdU-labeled cells showed 38% fewer TUNEL-positive cells 6 h after IR. Consequently, the growth retardation of the GCL was less pronounced in the lithium group. The number and size of microglia in the DG were also lower in the lithium group, indicating reduced inflammation. Learning was facilitated after lithium treatment, as judged by improved context-dependent fear conditioning, and improved place learning, as judged by assessment in the IntelliCage platform. In summary, lithium administration could decrease IR-induced neural progenitor cell apoptosis in the GCL of the hippocampus and ameliorate learning impairments. It remains to be shown if lithium can be used to prevent the debilitating cognitive late effects seen in children treated with cranial radiotherapy.
  •  
6.
  • Li, Hongfu, et al. (author)
  • Lithium-mediated long-term neuroprotection in neonatal rat hypoxia-ischemia is associated with antiinflammatory effects and enhanced proliferation and survival of neural stem/progenitor cells.
  • 2011
  • In: Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 1559-7016. ; 31:10, s. 2106-2115
  • Journal article (peer-reviewed)abstract
    • The aim of this study was to evaluate the long-term effects of lithium treatment on neonatal hypoxic-ischemic brain injury, inflammation, and neural stem/progenitor cell (NSPC) proliferation and survival. Nine-day-old male rats were subjected to unilateral hypoxia-ischemia (HI) and 2mmol/kg lithium chloride was injected intraperitoneally immediately after the insult. Additional lithium injections, 1mmol/kg, were administered at 24-hour intervals for 7 days. Animals were killed 6, 24, 72hours, or 7 weeks after HI. Lithium reduced total tissue loss by 69%, from 89.4±14.6mm(3) in controls (n=15) to 27.6±6.2mm(3) in lithium-treated animals (n=14) 7 weeks after HI (P<0.001). Microglia activation was inhibited by lithium treatment, as judged by Iba-1 and galectin-3 immunostaining, and reduced interleukin-1β and CCL2 levels. Lithium increased progenitor, rather than stem cell, proliferation in both nonischemic and ischemic brains, as judged by 5-bromo-2-deoxyuridine labeling 24 and 72hours as well as by phospho-histone H3 and brain lipid-binding protein labeling 7 weeks after HI. Lithium treatment also promoted survival of newborn NSPCs, without altering the relative levels of neuronal and astroglial differentiation. In summary, lithium conferred impressive, morphological long-term protection against neonatal HI, at least partly by inhibiting inflammation and promoting NSPC proliferation and survival.Journal of Cerebral Blood Flow & Metabolism advance online publication, 18 May 2011; doi:10.1038/jcbfm.2011.75.
  •  
7.
  • Li, Tao, et al. (author)
  • Overexpression of apoptosis inducing factor aggravates hypoxic-ischemic brain injury in neonatal mice
  • 2020
  • In: Cell death & disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Apoptosis inducing factor (AIF) has been shown to be a major contributor to neuron loss in the immature brain after hypoxia-ischemia (HI). Indeed, mice bearing a hypomorphic mutation causing reduced AIF expression are protected against neonatal HI. To further investigate the possible molecular mechanisms of this neuroprotection, we generated an AIF knock-in mouse by introduction of a latent transgene coding for flagged AIF protein into the Rosa26 locus, followed by its conditional activation by a ubiquitously expressed Cre recombinase. Such AIF transgenic mice overexpress the pro-apoptotic splice variant of AIF (AIF1) at both the mRNA (5.9 times higher) and protein level (2.4 times higher), but not the brain-specific AIF splice-isoform (AIF2). Excessive AIF did not have any apparent effects on the phenotype or physiological functions of the mice. However, brain injury (both gray and white matter) after neonatal HI was exacerbated in mice overexpressing AIF, coupled to enhanced translocation of mitochondrial AIF to the nucleus as well as enhanced caspase-3 activation in some brain regions, as indicated by immunohistochemistry. Altogether, these findings corroborate earlier studies demonstrating that AIF plays a causal role in neonatal HI brain injury.
  •  
8.
  • Liu, Yanyan, et al. (author)
  • Flowerlike CeO2 microspheres coated with Sr2Fe1.5Mo0.5Ox nanoparticles for an advanced fuel cell
  • 2015
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Journal article (peer-reviewed)abstract
    • Flowerlike CeO2 coated with Sr(2)Fe(1.5)Mo(0.5)Ox (Sr-Fe-Mo-oxide) nanoparticles exhibits enhanced conductivity at low temperatures (300-600 degrees C), e.g. 0.12 S cm(-1) at 600 degrees C, this is comparable to pure ceria (0.1 S cm(-1) at 800 degrees C). Advanced single layer fuel cell was constructed using the flowerlike CeO2/Sr-Fe-Mo-oxide layer attached to a Ni-foam layer coated with the conducting transition metal oxide. Such fuel cell has yielded a peak power density of 802 mWcm(-2) at 550 degrees C. The mechanism of enhanced conductivity and cell performance were analyzed. These results provide a promising strategy for developing advanced low-temperature SOFCs.
  •  
9.
  • Rodriguez, Juan, 1983, et al. (author)
  • Inhibiting the interaction between apoptosis-inducing factor and cyclophilin A prevents brain injury in neonatal mice after hypoxia-ischemia
  • 2020
  • In: Neuropharmacology. - : Elsevier BV. - 0028-3908 .- 1873-7064. ; 171
  • Journal article (peer-reviewed)abstract
    • © 2020 The Authors The interaction between apoptosis-inducing factor (AIF) and cyclophilin A (CypA) has been shown to contribute to caspase-independent apoptosis. Blocking the AIF/CypA interaction protects against glutamate-induced neuronal cell death in vitro, and the purpose of this study was to determine the in vivo effect of an AIF/CypA interaction blocking peptide (AIF(370-394)-TAT) on neonatal mouse brain injury after hypoxia-ischemia (HI). The pups were treated with AIF (370-394)-TAT peptide intranasally prior to HI. Brain injury was significantly reduced at 72 h after HI in the AIF(370-394)-TAT peptide treatment group compared to vehicle-only treatment for both the gray matter and the subcortical white matter, and the neuroprotection was more pronounced in males than in females. Neuronal cell death was evaluated in males at 8 h and 24 h post-HI, and it was decreased significantly in the CA1 region of the hippocampus and the nucleus habenularis region after AIF(370-394)-TAT treatment. Caspase-independent apoptosis was decreased in the cortex, striatum, and nucleus habenularis after AIF(370-394)-TAT treatment, but no significant change was found on caspase-dependent apoptosis as indicated by the number of active caspase-3-labeled cells. Further analysis showed that both AIF and CypA nuclear accumulation were decreased after treatment with the AIF(370-394)-TAT peptide. These results suggest that AIF(370-394)-TAT inhibited AIF/CypA translocation to the nucleus and reduced HI-induced caspase-independent apoptosis and brain injury in young male mice, suggesting that blocking AIF/CypA might be a potential therapeutic target for neonatal brain injury.
  •  
10.
  • Rodriguez, Juan, 1983, et al. (author)
  • Lack of the brain-specific isoform of apoptosis-inducing factor aggravates cerebral damage in a model of neonatal hypoxia-ischemia.
  • 2018
  • In: Cell Death & Disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Apoptosis-inducing factor (AIF) may contribute to neuronal cell death, and its influence is particularly prominent in the immature brain after hypoxia-ischemia (HI). A brain-specific AIF splice-isoform (AIF2) has recently been discovered, but has not yet been characterized at the genetic level. The aim of this study was to determine the functional and regulatory profile of AIF2 under physiological conditions and after HI in mice. We generated AIF2 knockout (KO) mice by removing the AIF2-specific exon and found that the relative expression of Aif1 mRNA increased in Aif2 KO mice and that this increase became even more pronounced as Aif2 KO mice aged compared to their wild-type (WT) littermates. Mitochondrial morphology and function, reproductive function, and behavior showed no differences between WT and Aif2 KO mice. However, lack of AIF2 enhanced brain injury in neonatal mice after HI compared to WT controls, and this effect was linked to increased oxidative stress but not to caspase-dependent or -independent apoptosis pathways. These results indicate that AIF2 deficiency exacerbates free radical production and HI-induced neonatal brain injury.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view