SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sundblad G.) "

Sökning: WFRF:(Sundblad G.)

  • Resultat 1-10 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Austin, Åsa N., et al. (författare)
  • Synergistic Effects of Rooted Aquatic Vegetation and Drift Wrack on Ecosystem Multifunctionality
  • 2021
  • Ingår i: Ecosystems (New York. Print). - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 24:7, s. 1670-1686
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecosystem multifunctionality is an increasingly popular concept used to approximate multifaceted ecosystem functioning, which in turn may help advance ecosystem-based management. However, while experimental studies have shown a positive effect of diversity on multifunctionality, observational studies from natural systems-particularly aquatic-are scarce. Here, we tested the relative importance of species richness and cover of rooted aquatic vegetation, as well as cover of the loose-lying form of the macroalgae bladderwrack (Fucus vesiculosus), for ecosystem multifunctionality in shallow bays along the western Baltic Sea coast. We estimated multifunctionality based on four indicators of functions that support ecosystem services: recruitment of large predatory fish, grazer biomass, inverted 'nuisance' algal biomass, and water clarity. Piecewise path analysis showed that multifunctionality was driven by high cover of rooted aquatic vegetation and bladderwrack, particularly when the two co-occurred. This synergistic effect was nearly three times as strong as a negative effect of land-derived nitrogen loading. Species richness of aquatic vegetation indirectly benefitted multifunctionality by increasing vegetation cover. Meanwhile, high bladderwrack cover tended to decrease vegetation species richness, indicating that bladderwrack has both positive and negative effects on multifunctionality. We conclude that managing for dense and diverse vegetation assemblages may mitigate effects of anthropogenic pressures (for example, eutrophication) and support healthy coastal ecosystems that provide a range of benefits. To balance the exploitation of coastal ecosystems and maintain their multiple processes and services, management therefore needs to go beyond estimation of vegetation cover and consider the diversity and functional types of aquatic vegetation.
  •  
5.
  •  
6.
  •  
7.
  • Bucas, M., et al. (författare)
  • Empirical modelling of benthic species distribution, abundance, and diversity in the Baltic Sea : evaluating the scope for predictive mapping using different modelling approaches
  • 2013
  • Ingår i: ICES Journal of Marine Science. - : Oxford University Press (OUP). - 1054-3139 .- 1095-9289. ; 70:6, s. 1233-1243
  • Tidskriftsartikel (refereegranskat)abstract
    • The predictive performance of distribution models of common benthic species in the Baltic Sea was compared using four non-linear methods: generalized additive models (GAMs), multivariate adaptive regression splines, random forest (RF), and maximum entropy modelling (MAXENT). The effects of data traits were also tested. In total, 292 occurrence models and 204 quantitative (abundance and diversity) models were assessed. The main conclusions are that (i) the spatial distribution, abundance, and diversity of benthic species in the Baltic Sea can be successfully predicted using several non-linear predictive modelling techniques; (ii) RF was the most accurate method for both models, closely followed by GAM and MAXENT; (iii) correlation coefficients of predictive performance among the modelling techniques were relatively low, suggesting that the performance of methods is related to specific responses; (iv) the differences in predictive performance among the modelling methods could only partly be explained by data traits; (v) the response prevalence was the most important explanatory variable for predictive accuracy of GAM and MAXENT on occurrence data; (vi) RF on the occurrence data was the only method sensitive to sampling density; (vii) a higher predictive accuracy of abundance models could be achieved by reducing variance in the response data and increasing the sample size.
  •  
8.
  • Donadi, Serena, et al. (författare)
  • A cross-scale trophic cascade from large predatory fish to algae in coastal ecosystems
  • 2017
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 284:1859
  • Tidskriftsartikel (refereegranskat)abstract
    • Trophic cascades occur in many ecosystems, but the factors regulating them are still elusive. We suggest that an overlooked factor is that trophic interactions (TIs) are often scale-dependent and possibly interact across spatial scales. To explore the role of spatial scale for trophic cascades, and particularly the occurrence of cross-scale interactions (CSIs), we collected and analysed food-web data from 139 stations across 32 bays in the Baltic Sea. We found evidence of a four-level trophic cascade linking TIs across two spatial scales: at bay scale, piscivores (perch and pike) controlled mesopredators (three-spined stickleback), which in turn negatively affected epifaunal grazers. At station scale (within bays), grazers on average suppressed epiphytic algae, and indirectly benefitted habitat-forming vegetation. Moreover, the direction and strength of the grazer-algae relationship at station scale depended on the piscivore biomass at bay scale, indicating a cross-scale interaction effect, potentially caused by a shift in grazer assemblage composition. In summary, the trophic cascade from piscivores to algae appears to involve TIs that occur at, but also interact across, different spatial scales. Considering scale-dependence in general, and CSIs in particular, could therefore enhance our understanding of trophic cascades.
  •  
9.
  •  
10.
  • Gifford, Robert, et al. (författare)
  • Temporal pessimism and spatial optimism in environmental assessments: An 18-nation study
  • 2009
  • Ingår i: Journal of Environmental Psychology. - : Elsevier BV. - 0272-4944. ; 29, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The personal assessments of the current and expected future state of the environment by 3232 community respondents in 18 nations were investigated at the local, national, and global spatial levels. These assessments were compared to a ranking of each country's environmental quality by an expert panel. Temporal pessimism (“things will get worse”) was found in the assessments at all three spatial levels. Spatial optimism bias (“things are better here than there”) was found in the assessments of current environmental conditions in 15 of 18 countries, but not in the assessments of the future. All countries except one exhibited temporal pessimism, but significant differences between them were common. Evaluations of current environmental conditions also differed by country. Citizens' assessments of current conditions, and the degree of comparative optimism, were strongly correlated with the expert panel's assessments of national environmental quality. Aside from the value of understanding global trends in environmental assessments, the results have important implications for environmental policy and risk management strategies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy