SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sundholm Dage) "

Sökning: WFRF:(Sundholm Dage)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baryshnikov, Glib, et al. (författare)
  • Odd-Number Cyclo[n]Carbons Sustaining Alternating Aromaticity
  • 2022
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 126:16, s. 2445-2452
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyclo[n]carbons (n = 5, 7, 9,..., 29) composed from an odd number of carbon atoms are studied computationally at density functional theory (DFT) and ab initio complete active space self-consistent field (CASSCF) levels of theory to get insight into their electronic structure and aromaticity. DFT calculations predict a strongly delocalized carbene structure of the cyclo[n]carbons and an aromatic character for all of them. In contrast, calculations at the CASSCF level yield geometrically bent and electronically localized carbene structures leading to an alternating double aromaticity of the odd-number cyclo[n]carbons. CASSCF calculations yield a singlet electronic ground state for the studied cyclo[n]carbons except for C25, whereas at the DFT level the energy difference between the lowest singlet and triplet states depends on the employed functional. The BHandHLYP functional predicts a triplet ground state of the larger odd-number cyclo[n]carbons starting from n = 13. Current-density calculations at the BHandHLYP level using the CASSCFoptimized molecular structures show that there is a through-space delocalization in the cyclo[n]carbons. The current density avoids the carbene carbon atom, leading to an alternating double aromaticity of the oddnumber cyclo[n]carbons satisfying the antiaromatic [4k+1] and aromatic [4k+3] rules. C11, C15, and C19 are aromatic and can be prioritized in future synthesis. We predict a bond-shift phenomenon for the triplet state of the cyclo[n]carbons leading to resonance structures that have different reactivity toward dimerization.
  •  
2.
  • Baryshnikov, Glib, V., et al. (författare)
  • Aromaticity of Even-Number Cyclo[n]carbons (n=6-100)
  • 2020
  • Ingår i: Journal of Physical Chemistry A. - : AMER CHEMICAL SOC. - 1089-5639 .- 1520-5215. ; 124:51, s. 10849-10855
  • Tidskriftsartikel (refereegranskat)abstract
    • The recently synthesized cyclo[18]carbon molecule has been characterized in a number of studies by calculating electronic, spectroscopic, and mechanical properties. However, cyclo[18] carbon is only one member of the class of cyclo[n]carbons-standalone carbon allotrope representatives. Many of the larger members of this class of molecules have not been thoroughly investigated. In this work, we calculate the magnetically induced current density of cyclo[n]carbons in order to elucidate how electron delocalization and aromatic properties change with the size of the molecular ring (n), where n is an even number between 6 and 100. We find that the Hiickel rules for aromaticity (4k + 2) and antiaromaticity (4k) become degenerate for large C-n rings (n > 50), which can be understood as a transition from a delocalized electronic structure to a nonaromatic structure with localized current density fluxes in the triple bonds. Actually, the calculations suggest that cyclo[n]carbons with n > 50 are nonaromatic cyclic polyalkynes. The influence of the amount of nonlocal exchange and the asymptotic behavior of the exchange-correlation potential of the employed density functionals on the strength of the magnetically induced ring current and the aromatic character of the large cyclo[n]carbons is also discussed.
  •  
3.
  • Baryshnikov, Gleb V., et al. (författare)
  • Aromaticity of the doubly charged [8]circulenes
  • 2016
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 18:13, s. 8980-8992
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetically induced current densities and current pathways have been calculated for a series of fully annelated dicationic and dianionic tetraphenylenes, which are also named [8]circulenes. The gauge including magnetically induced current (GIMIC) method has been employed for calculating the current density susceptibilities. The aromatic character and current pathways are deduced from the calculated current density susceptibilities showing that the neutral [8]circulenes have two concentric pathways with aromatic and antiaromatic character, respectively. The inner octatetraene core (the hub) is found to sustain a paratropic (antiaromatic) ring current, whereas the ring current along the outer part of the macrocycle (the rim) is diatropic (aromatic). The neutral [8]circulenes can be considered nonaromatic, because the sum of the ring-current strengths of the hub and the rim almost vanishes. The aromatic character of the doubly charged [8]circulenes is completely different: the dianionic [8]circulenes and the OC-, CH-, CH2-, SiH-, GeH-, SiH2-, and GeH2-containing dicationic species sustain net diatropic ring currents i.e., they are aromatic, whereas the O-, S-, Se-, NH-, PH- and AsH-containing dicationic [8]circulenes are strongly antiaromatic. The present study also shows that GIMIC calculations on the [8]circulenes provide more accurate information about the aromatic character than that obtained using local indices such as nuclear-independent chemical shifts (NICSs) and H-1 NMR chemical shifts.
  •  
4.
  • Baryshnikov, Gleb V., et al. (författare)
  • Cyclo[18]carbon : Insight into Electronic Structure, Aromaticity, and Surface Coupling
  • 2019
  • Ingår i: The Journal of Physical Chemistry Letters. - : AMER CHEMICAL SOC. - 1948-7185. ; 10:21, s. 6701-6705
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyclo[18]carbon (C-18) is studied computationally at the density functional theory (DFT) and ab initio levels to obtain insight into its electronic structure, aromaticity, and adsorption properties on a NaCl surface. DFT functionals with a small amount of Hartree-Fock exchange fail to determine the experimentally observed polyyne molecular structure, revealing a cumulene-type geometry. Exchange-correlation functionals with a large amount of Hartree-Fock exchange as well as ab initio CASSCF calculations yield the polyyne structure as the ground state and the cumulene structure as a transition state between the two inverted polyyne structures through a Kekule distortion. The polyyne and the cumulene structures are found to be doubly Huckel aromatic. The calculated adsorption energy of cyclo[18]carbon on the NaCl surface is small (37 meV/C) and almost the same for both structures, implying that the surface does not stabilize a particular geometry.
  •  
5.
  • Shao, Yihan, et al. (författare)
  • Benchmarking the Performance of Time-Dependent Density Functional Theory Methods on Biochromophores
  • 2020
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 16:1, s. 587-600
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum chemical calculations are important for elucidating light-capturing mechanisms in photobiological systems. The time-dependent density functional theory (TDDFT) has become a popular methodology because of its balance between accuracy and computational scaling, despite its problems in describing, for example, charge transfer states. As a step toward systematically understanding the performance of TDDFT calculations on biomolecular systems, we study here 17 commonly used density functionals, including seven long-range separated functionals, and compare the obtained results with excitation energies calculated at the approximate second order coupled-cluster theory level (CC2). The benchmarking set includes the first five singlet excited states of 11 chemical analogues of biochromophores from the green fluorescent protein, rhodopsin/bacteriorhodopsin (Rh/bR), and the photoactive yellow protein. We find that commonly used pure density functionals such as BP86, PBE, M11-L, and hybrid functionals with 20-25% of Hartree-Fock (HF) exchange (B3LYP, PBE0) have a tendency to consistently underestimate vertical excitation energies (VEEs) relative to the CC2 values, whereas hybrid density functionals with around 50% HF exchange such as BHLYP, PBE50, and M06-2X and long-range corrected functionals such as CAM-B3LYP, omega PBE, omega PBEh, omega B97X, omega B97XD, BNL, and M11 overestimate the VEEs. We observe that calculations using the CAM-B3LYP and omega PBEh functionals with 65% and 100% long-range HF exchange, respectively, lead to an overestimation of the VEEs by 0.2-0.3 eV for the benchmarking set. To reduce the systematic error, we introduce here two new empirical functionals, CAMh-B3LYP and omega hPBE0, for which we adjusted the long-range HF exchange to 50%. The introduced parameterization reduces the mean signed average (MSA) deviation to 0.07 eV and the root mean square (rms) deviation to 0.17 eV as compared to the CC2 values. In the present study, TDDFT calculations using the aug-def2-TZVP basis sets, the best performing functionals relative to CC2 are omega hPBE0 (rms = 0.17, MSA = 0.06 eV); CAMh-B3LYP (rms = 0.16, MSA = 0.07 eV); and PBE0 (rms = 0.23, MSA = 0.14 eV). For the popular range-separated CAM-B3LYP functional, we obtain an rms value of 0.31 eV and an MSA value of 0.25 eV, which can be compared with the rms and MSA values of 0.37 and -0.31 eV, respectively, as obtained at the B3LYP level.
  •  
6.
  • Shilyaeva, Ksenia, 1982- (författare)
  • Ways of determining and characterising resonances in scattering processes
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Scattering cross sections very often display structures. To clarify if these structures correspond to resonances one has to check if they are poles of the scattering matrix (S-matrix) in the fourth quadrant of the complex momentum plane. Furthermore, the states corresponding to these poles also need to have an appropriate scattering amplitude. The complex energies of resonances associated with several potentials were computed by solving complex dilated differential equations using both a Numerov method and a Finite Element Method as well as by solving integral equations with a δ-potentials technique combined with the complex dilation method. The influence of resonances on the s-wave cross section for model one channel potentials was studied using the Mittag-Leffler and the Green's function expansion formalisms and comparisons made between these two approaches. It is demonstrated how the partial wave S-matrix can be continued into a sector in the fourth quadrant of the complex momentum plane where its poles and residues can be determined. These two formally equivalent methods were found to produce numerically identical S-matrix residues. However, both methods have essential drawbacks and, therefore, a technique for identifying the contribution of individual resonances to the cross section, which is based on the S-matrix residue, is suggested. This involves defining both a reduced partial wave S-matrix and reduced cross section. The technique presented here is successfully applied to the two-channel Noro-Taylor potential and a more realistic scattering process, namely the N3+ + H → NH3+ → N2+ + H+ reaction. Note that my name can be spelt in different ways. In official documents it is Kseniya Shyliayeva but in all papers I used another spelling, namely: Ksenia Shilyaeva.  
  •  
7.
  • Stegeby, Henrik, 1979- (författare)
  • MATTER-ANTIMATTER INTERACTIONS : The hydrogen-antihydrogen system and antiproton-matter interactions
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Ever since antiparticles were discovered their nature has been something of a mystery. They were postulated to be identical to regular particles except for having opposite charge, but this would imply that an equal amount of antiparticles and particles should have been created at the beginning of time. However, everywhere we look the Universe seems to be constituted of regular particles, giving rise to the question whether there is something else that differentiates antiparticles from regular particles, or if there is something amiss in the Standard Model of particle physics.This thesis focuses on a central system of study in this field, the hydrogen-antihydrogen system and the theory surrounding it, as well as an expansion into systems with an antiproton interacting with small molecules, bridging the fields of quantum physics and quantum chemistry.Methods expanding on the Born-Oppenheimer approximation for the interaction between the two atoms are presented. The resulting 2-body interaction potential is then used for creating a part of the basis in a non-adiabatic 4-body method in order to look for resonance states whose existence could impact cross-sections of hydrogen-antihydrogen scattering. The eigenfunctions obtained from the non-adiabatic method are used by extracting the 2-body hadronic density function and comparing it to the adiabatic wave function, for measuring the adiabaticity of the hydrogen-antihydrogen system.The antiproton-matter interaction is first investigated by a quantum dynamical approach of an antiproton scattering on molecular hydrogen, common products in high-energy collision experiments, continued by a study of the potential energy surfaces of an antiproton interacting with a range of functional groups present in the human body.
  •  
8.
  • Valiev, Rashid R., et al. (författare)
  • When are Antiaromatic Molecules Paramagnetic?
  • 2020
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 124:38, s. 21027-21035
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetizabilities and magnetically induced current densities have been calculated and analyzed for a series of antiaromatic cyclo[4k]carbons (k = 2-11), iso[n]phlorins (n = 4-8), expanded porphyrinoids, and meso-meso, beta-beta,beta-beta triple-linked porphyrin and isophlorin arrays. The cyclo[4k]carbons with k = 2-6 are predicted to be closed-shell paramagnetic molecules due to the very strong paratropic ring current combined with its large radius. Larger cyclo[4k]carbons with k = 6-11 are diamagnetic because they sustain a paratropic ring current whose strength is weaker than -20 nA T-1, which seems to be the lower threshold value for closed-shell paramagnetism. This holds not only for cyclo[4k]carbons but also for other organic molecules like expanded porphyrinoids and oligomers of porphyrinoids. The present study shows that meso-meso, beta-beta, beta-beta triple-linked linear porphyrin and isophlorin arrays have a domainlike distribution of alternating diatropic and paratropic ring currents. The strength of their local paratropic ring currents is weaker than -20 nA T-1 in each domain. Therefore, linear porphyrin and isophlorin arrays become more diamagnetic with increasing length of the ribbon. For the same reason, square-shaped meso-meso, beta-beta, beta-beta triple-linked free-base porphyrin and isophlorin tetramers as well as the Zn(II) complex of the porphyrin tetramer are diamagnetic. We show that closed-shell molecules with large positive magnetizabilities can be designed by following the principle that a strong paratropic current ring combined with a large ring-current radius leads to closed-shell paramagnetism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy